Log in

Control design for beam stabilization with self-sensing piezoelectric actuators: managing presence and absence of hysteresis

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This paper deals with the modelling and stabilization of a flexible clamped beam controlled with a piezoelectric actuator in the self-sensing configuration. We derive the model starting from general principles, using the general laws of piezoelectricity. The obtained model is composed by a PDE, describing the flexible deformations dynamics, interconnected with an ODE describing the electric charge dynamics. Firstly, we show that the derived linear model is well-posed and the origin is globally asymptotically stable when a voltage control law, containing the terms estimated in the self-sensing configuration, is applied. Secondly, we make the more realistic assumption of the presence of hysteresis in the electrical domain. Applying a passive control law, we show the well-posedness and the origin’s global asymptotic stability of the nonlinear closed-loop system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aldraihem O, Wetherhold R, Singh T (1996) Intelligent beam structures: Timoshenko theory vs. Euler–Bernoulli theory. In: Proceeding of the 1996 IEEE international conference on control applications IEEE international conference on control applications held together with IEEE international symposium on intelligent control. IEEE, pp 976–981

  2. Bastin G, Coron J (2016) Stability and boundary stabilization of 1-D hyperbolic systems, vol 88. Springer, Berlin

    Book  Google Scholar 

  3. Brezis H (2011) Functional analysis, Sobolev spaces and partial differential equations. Springer, Berlin

    Book  Google Scholar 

  4. Caballeria J, Ramirez H, Le Gorrec Y (2021) An irreversible port-Hamiltonian model for a class of piezoelectric actuators. IFAC-PapersOnLine 54(14):436–441

    Article  Google Scholar 

  5. Choi S, Han Y (2016) Piezoelectric actuators: control applications of smart materials. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Crépeau E, Prieur C (2006) Control of a clamped-free beam by a piezoelectric actuator. ESAIM Control Optim Calc Var 12(3):545–563

    Article  MathSciNet  Google Scholar 

  7. Curtain R, Zwart H (2020) Introduction to infinite-dimensional linear systems theory, a state-space approach, 1st edn. Springer, Berlin

    Google Scholar 

  8. Dadfarnia M, Jalili N, **an B et al (2004) A Lyapunov-based piezoelectric controller for flexible cartesian robot manipulators. J Dyn Syst Meas Control 126(2):347–358

    Article  Google Scholar 

  9. Destuynder P (1999) A mathematical analysis of a smart-beam which is equipped with piezoelectric actuators. Control Cybern 28(3):503–530

    MathSciNet  Google Scholar 

  10. Dosch J, Inman DJ, Garcia E (1992) A self-sensing piezoelectric actuator for collocated control. J Intell Mater Syst Struct 3(1):166–185

    Article  Google Scholar 

  11. d’ Andréa-Novel B, Coron J (2000) Exponential stabilization of an overhead crane with flexible cable via a back-step** approach. Automatica 36(4):587–593

    Article  MathSciNet  Google Scholar 

  12. Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130(4):1–15

    Article  Google Scholar 

  13. Goldfarb M, Celanovic NL (1997) A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators. J Dyn Syst Meas Control Trans ASME 119:478–485

    Article  Google Scholar 

  14. Homayouni-Amlashi A, Mohand-Ousaid A, Rakotondrabe M (2020) Analytical modelling and optimization of a piezoelectric cantilever energy harvester with in-span attachment. Micromachines 11(6):591

    Article  Google Scholar 

  15. Krstic K, Smyshlyaev A (2008) Boundary control of PDEs: a course on backstep** designs. SIAM, Philadelphia

    Book  Google Scholar 

  16. Le Gall P, Prieur C, Rosier L (2007) Output feedback stabilization of a clamped-free beam. Int J Control 80(8):1201–1216

    Article  MathSciNet  Google Scholar 

  17. Le Gall P, Prieur C, Rosier L (2007) Stabilization of a clamped-free beam with collocated piezoelectric sensor/actuator. Int J Tomogr Stat 6(S07):104–109

    MathSciNet  Google Scholar 

  18. Liseli JB, Agnus J, Lutz P et al (2019) An overview of piezoelectric self-sensing actuation for nanopositioning applications: electrical circuits, displacement, and force estimation. IEEE Trans Instrum Meas 69(1):2–14

    Article  Google Scholar 

  19. Luo Z, Guo B, Morgül Ö (2012) Stability and stabilization of infinite dimensional systems with applications. Springer, Berlin

    Google Scholar 

  20. Mattioni A (2021) Modelling and stability analysis of flexible robots: a distributed parameter port-Hamiltonian approach. Ph.D. thesis

  21. Mattioni A, Wu Y, Le Gorrec Y, et al (2020) Stabilisation of a rotating beam clamped on a moving inertia with strong dissipation feedback. In: 2020 59th IEEE conference on decision and control (CDC). IEEE, pp 5056–5061

  22. Mattioni A, Wu Y, Le Gorrec Y, et al (2022) Stabilization of a class of mixed ODE-PDE port-Hamiltonian systems with strong dissipation feedback. Automatica (in press)

  23. Meirovitch L (1975) Elements of vibration analysis

  24. Miyadera I (1992) Nonlinear semigroups. Translations of mathematical monographs. American Mathematical Society, New York

    Google Scholar 

  25. Prieur C, Tarbouriech S (2019) Beam equation with saturating piezoelectric controls. IFAC-PapersOnLine 52(16):66–71

    Article  Google Scholar 

  26. Prieur C, Tarbouriech S, Gomes da Silva JM Jr (2016) Wave equation with cone-bounded control laws. IEEE Trans Autom Control 61(11):3452–3463

    Article  MathSciNet  Google Scholar 

  27. Rakotondrabe M, Ivan IA, Khadraoui S et al (2014) Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control. IEEE/ASME Trans Mechatron 20(2):519–531

    Article  Google Scholar 

  28. Rittenschober T, Schlacher K (2012) Observer-based self sensing actuation of piezoelastic structures for robust vibration control. Automatica 48(6):1123–1131

    Article  MathSciNet  Google Scholar 

  29. Showalter RE (2013) Monotone operators in Banach space and nonlinear partial differential equations, vol 49. American Mathematical Society, New York

    Book  Google Scholar 

  30. Simmers GE Jr, Hodgkins JR, Mascarenas DD et al (2004) Improved piezoelectric self-sensing actuation. J Intell Mater Syst Struct 15(12):941–953

    Article  Google Scholar 

  31. Singh S, Weiss G, Tucsnak M (2022) A class of incrementally scattering-passive nonlinear systems. Automatica (to appear)

  32. Slemrod M (1989) Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control. Math Control Signals Syst 2(3):265–285

    Article  MathSciNet  Google Scholar 

  33. Tarbouriech S, Garcia G, Gomes da Silva JM Jr et al (2011) Stability and stabilization of linear systems with saturating actuators. Springer, Berlin

    Book  Google Scholar 

  34. Teel AR, Zaccarian L (2011) Modern anti-windup synthesis: control augmentation for actuator saturation. Princeton University Press, Princeton

    Google Scholar 

  35. Tucsnak M (1996) Regularity and exact controllability for a beam with piezoelectric actuator. SIAM J Control Optim 34(3):922–930

    Article  MathSciNet  Google Scholar 

  36. Vanspranghe N, Ferrante F, Prieur C (2022) Stabilization of the wave equation through nonlinear Dirichlet actuation. ar**v https://doi.org/10.48550/ARXIV.2208.13530

  37. Yang J et al (2005) An introduction to the theory of piezoelectricity, vol 9. Springer, Berlin

    Google Scholar 

  38. Yeh TJ, Ruo-Feng H, Shin-Wen L (2008) An integrated physical model that characterizes creep and hysteresis in piezoelectric actuators. Simul Model Pract Theory 16(1):93–110

    Article  Google Scholar 

Download references

Funding

This work has been received funding from MIAI@Grenoble Alpes project (Grant ANR-19-P3IA-0003) and by the ANR Labex CIMI (Grant ANR-11-LABX- 0040).

Author information

Authors and Affiliations

Authors

Contributions

CP and ST had the main ideas regarding including electric dynamics in the model. CP and ST wrote the beginning of section 2. AM wrote the modelling and the linear case sections (sections 2 and 3). AM and CP wrote section 4. All authors reviewed the manuscript.

Corresponding author

Correspondence to Andrea Mattioni.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattioni, A., Prieur, C. & Tarbouriech, S. Control design for beam stabilization with self-sensing piezoelectric actuators: managing presence and absence of hysteresis. Math. Control Signals Syst. (2024). https://doi.org/10.1007/s00498-024-00393-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-024-00393-6

Keywords

Navigation