Log in

A weighted collocation on the strong form with mixed radial basis approximations for incompressible linear elasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A weighted strong form collocation framework with mixed radial basis approximations for the pressure and displacement fields is proposed for incompressible and nearly incompressible linear elasticity. It is shown that with the proper choice of independent source points and collocation points for the radial basis approximations in the pressure and displacement fields, together with the analytically derived weights associated with the incompressibility constraint and boundary condition collocation equations, optimal convergence can be achieved. The optimal weights associated with the collocation equations are derived based on achieving balanced errors resulting from domain, boundaries, and constraint equations. Since in the proposed method the overdetermined system of the collocation equations is solved by a least squares method, independent pressure and displacement approximations can be selected without suffering from instability due to violation of the LBB stability condition. The numerical solutions verify that the solution of the proposed method does not exhibit volumetric locking and pressure oscillation, and that the solution converges exponentially in both L\(_{2}\) norm and H\(_{1}\) semi-norm, consistent with the error analysis results presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Method Eng 37(2):229–256

    Article  MATH  MathSciNet  Google Scholar 

  2. Liu WK, Jun S, Zhang YF (1995) Reproducing Kernel particle methods. Int J Numer Method Fluid 20(8–9):1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuska I, Melenk JM (1997) The partition of unity method. Int J Numer Method Eng 40(4):727–758

    Article  MATH  MathSciNet  Google Scholar 

  4. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Notices R Astron Soc 181(2):375–389

    MATH  Google Scholar 

  5. Atluri SN, Zhu TL (2000) The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput Mech 25(2–3):169–179

    Article  MATH  Google Scholar 

  6. Chen JS, Pan CH, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Method Appl Mech Eng 139(1–4):195–227

    Article  MATH  MathSciNet  Google Scholar 

  7. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics.1. Comput Math Appl 19(8–9):127–145

    Article  MATH  MathSciNet  Google Scholar 

  8. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics.2. Solutions to parabolic, hyperbolic and elliptic partial-differential equations. Comput Math Appl 19(8–9):147–161

    Article  MATH  MathSciNet  Google Scholar 

  9. Aluru NR (2000) A point collocation method based on reproducing kernel approximations. Int J Numer Method Eng 47(6):1083–1121

    Article  MATH  Google Scholar 

  10. Hu HY, Chen JS, Hu W (2011) Error analysis of collocation method based on reproducing Kernel approximation. Numer Method Partial Differ Equ 27(3):554–580

    Article  MATH  Google Scholar 

  11. Chen JS, Hu HY, Hu W (2007) Weighted radial basis collocation method for boundary value problems. Int J Numer Method Eng 69(13):2736–2757

    Article  MATH  Google Scholar 

  12. Chen JS, Wang LH, Hu HY, Chi SW (2009) Subdomain radial basis collocation method for heterogeneous media. Int J Numer Method Eng 80(2):163–190

    Article  MATH  MathSciNet  Google Scholar 

  13. Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93(1):73–82

    Article  MATH  MathSciNet  Google Scholar 

  14. Hu HY, Li ZC, Cheng AHD (2005) Radial basis collocation methods for elliptic boundary value problems. Comput Math Appl 50(1–2):289–320

    Article  MATH  MathSciNet  Google Scholar 

  15. Wendland H (1999) Meshless Galerkin methods using radial basis functions. Math Comput 68(228):1521–1531

    Article  MATH  MathSciNet  Google Scholar 

  16. Cecil T, Qian JL, Osher S (2004) Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions. J Comput Phys 196(1):327–347

    Article  MATH  MathSciNet  Google Scholar 

  17. Pollandt R (1997) Solving nonlinear differential equations of mechanics with the boundary element method and radial basis functions. Int J Numer Method Eng 40(1):61–73

    Article  MathSciNet  Google Scholar 

  18. Sonar T (1996) Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws. Ima J Numer Anal 16(4):549–581

    Article  MATH  MathSciNet  Google Scholar 

  19. Chi SW, Chen JS, Luo H, Hu HY, Wang L (2012) Dispersion and stability properties of radial basis collocation method for elastodynamics. In: Numerical methods for partial differential equations. Springer, New York

  20. Wang LH, Chen JS, Hu HY (2010) Subdomain radial basis collocation method for fracture mechanics. Int J Numer Method Eng 83(7):851–876

    MATH  MathSciNet  Google Scholar 

  21. Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93(2):258–272

    Article  MATH  MathSciNet  Google Scholar 

  22. Chen JS, Hu W, Hu HY (2008) Reproducing kernel enhanced local radial basis collocation method. Int J Numer Method Eng 75(5):600–627

    Article  MATH  Google Scholar 

  23. Herrmann LR (1965) Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA J 3(10):1896–1900

    Article  MathSciNet  Google Scholar 

  24. Murakawa H, Atluri SN (1979) inite elasticity solutions using hybrid finite-elements based on a complementary energy principle.2. Incompressible materials. J Appl Mech Trans ASME 46(1):71–77

    Article  MATH  Google Scholar 

  25. Pian THH, Sumihara K (1984) Rational approach for assumed stress finite-elements. Int J Numer Method Eng 20(9):1685–1695

    Article  MATH  Google Scholar 

  26. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Method Eng 29(8):1595–1638

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu WK, Belytschko T, Chen JS (1988) Nonlinear versions of flexurally superconvergent elements. Comput Method Appl Mech Eng 71(3):241–258

    Article  MATH  Google Scholar 

  28. Chen JS, Satyamurthy K, Hirschfelt LR (1994) Consistent finite-element procedures for nonlinear rubber elasticity with a higher-order strain-energy function. Comput Struct 50(6):715–727

    Article  MATH  Google Scholar 

  29. Babuska I (1973) Finite-element method with Lagrangian multipliers. Numer Math 20(3):179–192

    Article  MATH  MathSciNet  Google Scholar 

  30. Brezzi F (1974) Existence, uniqueness and approximation of Saddle-point problems arising from Lagrangian multipliers. Revue Francaise D Automatique Informatique Recherche Operationnelle 8(Nr2): 129–151

    Google Scholar 

  31. Sani RL, Gresho PM, Lee RL, Griffiths DF (1981) The cause and cure (questionable) of the spurious pressures generated by certain fem solutions of the incompressible Navier-stokes equations.1. Int J Numer Method Fluid 1(1):17–43

    Article  MATH  MathSciNet  Google Scholar 

  32. Sussman T, Bathe KJ (1987) A finite-element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct 26(1–2):357–409

    Article  MATH  Google Scholar 

  33. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, New York

    Google Scholar 

  34. Chen JS, Han W, Wu CT, Duan W (1997) On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity. Comput Method Appl Mech Eng 142(3–4):335–351

    Article  MATH  MathSciNet  Google Scholar 

  35. Chen JS, Pan CH (1996) A pressure projection method for nearly incompressible rubber hyperelasticity.1. J Appl Mech Trans ASME 63(4):862–868

    Article  MATH  MathSciNet  Google Scholar 

  36. Chen JS, Wu CT, Pan CH (1996) A pressure projection method for nearly incompressible rubber hyperelasticity.2. Applications. J Appl Mech Trans ASME 63(4):869–876

    Article  MATH  Google Scholar 

  37. Fried I (1974) Finite element analysis of incompressible material by residual energy balancing. Int J Solid Struct 10(9):993–1002

    Article  MATH  Google Scholar 

  38. Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Method Eng 3(2):275–290

    Google Scholar 

  39. Malkus DS, Hughes TJR (1978) Mixed finite-element methods—reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15(1):63–81

    Google Scholar 

  40. Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Method Eng 15(9):1413–1418

    Article  MATH  Google Scholar 

  41. Belytschko T, Ong JSJ, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Method Appl Mech Eng 43(3):251–276

    Article  MATH  Google Scholar 

  42. Liu WK, Ong JSJ, Uras RA (1985) Finite-element stabilization matrices—a unification approach. Comput Method Appl Mech Eng 53(1):13–46

    Article  MATH  MathSciNet  Google Scholar 

  43. Vidal Y, Villon P, Huerta A (2003) Locking in the incompressible limit: pseudo-divergence-free element free Galerkin. Commun Numer Method Eng 19(9):725–735

    Article  MATH  Google Scholar 

  44. Lovadina C, Auricchio F, da Veiga LB, Buffa A, Reali A, Sangalli G (2007) A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput Method Appl Mech Eng 197(1–4):160–172

    MATH  Google Scholar 

  45. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Method Appl Mech Eng 194(39–41):4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  46. Wu CT, Hu W, Chen JS (2012) A meshfree-enriched finite element method for compressible and near-incompressible elasticity. Int J Numer Method Eng 90(7):882–914

    Article  MATH  MathSciNet  Google Scholar 

  47. Franca LP, Stenberg R (1991) Error analysis of some Galerkin least-squares methods for the elasticity equations. SIAM J Numer Anal 28(6):1680–1697

    Article  MATH  MathSciNet  Google Scholar 

  48. Cai ZQ, Starke G (2004) Least-squares methods for linear elasticity. SIAM J Numer Anal 42(2):826–842

    Article  MATH  MathSciNet  Google Scholar 

  49. Micchelli CA (1986) Interpolation of scattered data—distance matrices and conditionally positive definite functions. Constr Approx 2(1):11–22

    Article  MATH  MathSciNet  Google Scholar 

  50. Madych WR, Nelson SA (1990) Multivariate interpolation and conditionally positive definite functions.2. Math Comput 54(189):211–230

    Article  MATH  MathSciNet  Google Scholar 

  51. Madych WR (1992) Miscellaneous error-bounds for multiquadric and related interpolators. Comput Math Appl 24(12):121–138

    Article  MATH  MathSciNet  Google Scholar 

  52. Ciarlet PG (1978) Mathematical elasticity vol I: three dimensional elasticity. North-Holland, Amsterdam

    Google Scholar 

  53. Timoshenko SP, Goodier JN (1934) Theory of elasticity. McGraw-Hill, New York

  54. Chen JS, Pan C, Chang TYP (1995) On the control of pressure oscillation in bilinear-displacement constant-pressure element. Comput Method Appl Mech Eng 128(1–2):137–152

    Google Scholar 

  55. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier, New York

    Google Scholar 

Download references

Acknowledgments

The support of this work by the University of Illinois at Chicago to the first author, the support by US Army ERDC under contract W912HZ-07-C-0019 to the second author, and the support by National Science Council (Taiwan) 100-2115-M-029-002 to the third author are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Wei Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, SW., Chen, JS. & Hu, HY. A weighted collocation on the strong form with mixed radial basis approximations for incompressible linear elasticity. Comput Mech 53, 309–324 (2014). https://doi.org/10.1007/s00466-013-0909-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0909-9

Keywords

Navigation