Log in

Rhodococcus erythropolis ATCC 4277 behavior against different metals and its potential use in waste biomining

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Rhodococcus erythropolis bacterium is known for its remarkable resistance characteristics that can be useful in several biotechnological processes, such as bioremediation. However, there is scarce knowledge concerning the behavior of this strain against different metals. This study sought to investigate the behavior of R. erythropolis ATCC 4277 against the residue of chalcopyrite and e-waste to verify both resistive capacities to the metals present in these residues and their potential use for biomining processes. These tests were carried out in a stirred tank bioreactor for 48 h, at 24ºC, pH 7.0, using a total volume of 2.0 L containing 2.5% (v/v) of a bacterial pre-culture. The pulp density of chalcopyrite was 5% (w/w), and agitation and oxygen flow rates were set to 250 rpm and 1.5 LO2 min−1, respectively. On the other hand, we utilized a waste of computer printed circuit board (WPCB) with a pulp density of 10% (w/w), agitation at 400 rpm, and an oxygen flow rate of 3.0 LO2 min−1. Metal concentration analyses post-fermentation showed that R. erythropolis ATCC 4277 was able to leach about 38% of the Cu present in the chalcopyrite residue (in ~ 24 h), and 49.5% of Fe, 42.3% of Ni, 27.4% of Al, and 15% Cu present in WPCB (in ~ 24 h). In addition, the strain survived well in the environment containing such metals, demonstrating the potential of using this bacterium for waste biomining processes as well as in other processes with these metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be provided upon request. The data supporting the findings of this study are openly available in the UNIFESP Repository at https://repositorio.unifesp.br/.

References

  1. Anjum F, Shahid M, Akcil A (2012) Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117–118:1–12. https://doi.org/10.1016/j.hydromet.2012.01.007

    Article  CAS  Google Scholar 

  2. Zhang K, Schnoor JL, Zeng EY (2012) E-waste recycling: Where does it go from here? Environ Sci Technol 46:10861–10867. https://doi.org/10.1021/es303166s

    Article  CAS  PubMed  Google Scholar 

  3. Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97:7543–7552. https://doi.org/10.1007/s00253-013-5095-3

    Article  CAS  PubMed  Google Scholar 

  4. Kutschke S, Guézennec AG, Hedrich S et al (2015) Bioleaching of kupferschiefer blackshale - a review including perspectives of the ecometals project. Miner Eng 75:116–125. https://doi.org/10.1016/j.mineng.2014.09.015

    Article  CAS  Google Scholar 

  5. Zhao H, Zhang Y, Zhang X et al (2019) The dissolution and passivation mechanism of chalcopyrite in bioleaching: an overview. Miner Eng 136:140–154. https://doi.org/10.1016/j.mineng.2019.03.014

    Article  CAS  Google Scholar 

  6. Hatje V, Pedreira RMA, de Rezende CE et al (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Reports 7:1–13. https://doi.org/10.1038/s41598-017-11143-x

    Article  CAS  Google Scholar 

  7. Falagán C, Grail BM, Johnson DB (2017) New approaches for extracting and recovering metals from mine tailings. Miner Eng 106:71–78. https://doi.org/10.1016/J.MINENG.2016.10.008

    Article  Google Scholar 

  8. Lèbre É, Corder GD, Golev A (2017) Sustainable practices in the management of mining waste: a focus on the mineral resource. Miner Eng 107:34–42. https://doi.org/10.1016/J.MINENG.2016.12.004

    Article  Google Scholar 

  9. dos Vergilio CS, Lacerda D, de Oliveira BCV et al (2020) (2020) Metal concentrations and biological effects from one of the largest mining disasters in the world brumadinho, Minas gerais Brazil. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-62700-w

    Article  CAS  Google Scholar 

  10. Ministério Público Federal (2016) O desastre — Caso Rio Doce. http://www.mpf.mp.br/grandes-casos/caso-rio-doce/o-desastre. Accessed 4 Apr 2019

  11. Brandão IY, Maass D, Akihiro Munakata A, Antonio Lourenço L (2021) How biomining has been used to recover metals from ores and waste? a review. Int J Earth Environ Sci. https://doi.org/10.15344/2456-351X/2021/188

    Article  Google Scholar 

  12. Madrigal-Arias JE, Argumedo-Delira R, Alarcón A et al (2015) Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two aspergillus niger strains. Braz J Microbiol 46:707–713. https://doi.org/10.1590/S1517-838246320140256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adetunji AI, Oberholster PJ, Erasmus M (2023) Bioleaching of metals from e-waste using microorganisms: a review. Minerals 13:828. https://doi.org/10.3390/MIN13060828

    Article  CAS  Google Scholar 

  14. Becci A, Amato A, Rodríguez-Maroto JM, Beolchini F (2021) Bioleaching of end-of-life printed circuit boards: mathematical modeling and kinetic analysis. Ind Eng Chem Res 60:4261–4268. https://doi.org/10.1021/ACS.IECR.0C05566/ASSET/IMAGES/LARGE/IE0C05566_0007.JPEG

    Article  CAS  Google Scholar 

  15. Pietrelli L, Ferro S, Vocciante M (2019) Eco-friendly and cost-effective strategies for metals recovery from printed circuit boards. Renew Sustain Energy Rev 112:317–323. https://doi.org/10.1016/J.RSER.2019.05.055

    Article  CAS  Google Scholar 

  16. Makov T, Fitzpatrick C (2021) Is repairability enough? big data insights into smartphone obsolescence and consumer interest in repair. J Clean Prod 313:127561. https://doi.org/10.1016/J.JCLEPRO.2021.127561

    Article  Google Scholar 

  17. Forti V, Baldé C, Kuehr R, Bel G (2020) The Global E-Waste Monitor 2020. UNU/UNITAR SCYCLE, ITU, ISWA

  18. Teimouri F, Mokhtari M, Nasiri T, Abouee E (2023) Introducing heterotrophic iron ore bacteria as new candidates in promoting the recovery of e-waste strategic metals. World J Microbiol Biotechnol 39:1–19. https://doi.org/10.1007/S11274-023-03589-1/TABLES/5

    Article  Google Scholar 

  19. Potysz A, Pȩdziwiatr A, Hedwig S, Lenz M (2020) Bioleaching and toxicity of metallurgical wastes. J Environ Chem Eng 8:104450. https://doi.org/10.1016/J.JECE.2020.104450

    Article  CAS  Google Scholar 

  20. Johnson DB (2014) Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31. https://doi.org/10.1016/j.copbio.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  21. Guo J, Guo J, Xu Z (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mater 168:567–590

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan G, Ram P, Pant KK et al (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges and opportunities – a review. J Environ Chem Eng 6:1288–1304. https://doi.org/10.1016/j.jece.2018.01.032

    Article  CAS  Google Scholar 

  23. Kreusch MA, Ponte MJJS, Ponte HA et al (2007) Technological improvements in automotive battery recycling. Resour Conserv Recycl 52:368–380. https://doi.org/10.1016/j.resconrec.2007.05.004

    Article  Google Scholar 

  24. Sun B, Yang C, Gui W (2015) A discussion of the control of nonferrous metallurgical processes. In: IFAC-PapersOnLine. pp 80–85

  25. Kim MJ, Seo JY, Choi YS, Kim GH (2016) Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Waste Manage 51:168–173. https://doi.org/10.1016/j.wasman.2015.11.001

    Article  CAS  Google Scholar 

  26. Li D, Dou L, Yajie Y et al (2013) Effects of sodium dodecyl sulphate on biooxidation of copper mine tailings by acidithiobacillus ferrooxidans. Article Res J Biotechnol 8:11

    Google Scholar 

  27. Murugesan MP, Kannan K, Selvaganapathy T (2020) Bioleaching recovery of copper from printed circuit boards and optimization of various parameters using response surface methodology (RSM). Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.571

    Article  Google Scholar 

  28. Ahmadi A, Khezri M, Abdollahzadeh AA, Askari M (2015) Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of golgohar iron mine. Iran Hydrometall 154:1–8. https://doi.org/10.1016/J.HYDROMET.2015.03.006

    Article  CAS  Google Scholar 

  29. Campodonico MA, Vaisman D, Castro JF et al (2016) Acidithiobacillus ferrooxidans’s comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications. Metab Eng Commun 3:84–96. https://doi.org/10.1016/J.METENO.2016.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martínez-Bussenius C, Navarro CA, Jerez CA (2017) Microbial copper resistance: importance in biohydrometallurgy. Microb Biotechnol 10:279–295. https://doi.org/10.1111/1751-7915.12450

    Article  CAS  PubMed  Google Scholar 

  31. Jerez CA (2017) Biomining of metals: how to access and exploit natural resource sustainably. Microb Biotechnol 10:1191–1193. https://doi.org/10.1111/1751-7915.12792

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang R, Hedrich S, Römer F et al (2020) Bioleaching of cobalt from Cu/Co-rich sulfidic mine tailings from the polymetallic rammelsberg mine. Germany Hydrometall 197:105443. https://doi.org/10.1016/J.HYDROMET.2020.105443

    Article  CAS  Google Scholar 

  33. Işıldar A, van de Vossenberg J, Rene ER et al (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manage 57:149–157. https://doi.org/10.1016/j.wasman.2015.11.033

    Article  CAS  Google Scholar 

  34. Faramarzi MA, Mogharabi-Manzari M, Brandl H (2020) Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms. Hydrometallurgy 191:105228. https://doi.org/10.1016/j.hydromet.2019.105228

    Article  CAS  Google Scholar 

  35. Jagannath A, Shetty KV, Saidutta MB (2017) Bioleaching of copper from electronic waste using acinetobacter sp. Cr B2 in a pulsed plate column operated in batch and sequential batch mode. J Environ Chem Eng 5:1599–1607. https://doi.org/10.1016/j.jece.2017.02.023

    Article  CAS  Google Scholar 

  36. De Carvalho CCCR, Da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726. https://doi.org/10.1007/s00253-005-1932-3

    Article  CAS  PubMed  Google Scholar 

  37. Latour X, Barbey C, Chane A et al (2013) (2013) Rhodococcus erythropolis and Its γ-lactone catabolic pathway: an unusual biocontrol system that disrupts pathogen quorum sensing communication. Agronomy 3:816–838. https://doi.org/10.3390/AGRONOMY3040816

    Article  Google Scholar 

  38. Presentato A, Piacenza E, Cappelletti M, Turner RJ (2019) Biology of Rhodococcus. Interaction of Rhodococcus with Metals and Biotechnological Applications. Springer International Publishing, Cham

    Google Scholar 

  39. Baltazar MDPG, Gracioso LH, Avanzi IR et al (2019) Copper biosorption by Rhodococcus erythropolis isolated from the Sossego Mine - PA - Brazil. J Market Res 8:475–483. https://doi.org/10.1016/j.jmrt.2018.04.006

    Article  CAS  Google Scholar 

  40. Dobrowolski R, Szcześ A, Czemierska M, Jarosz-Wikołazka A (2017) Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour Technol 225:113–120. https://doi.org/10.1016/J.BIORTECH.2016.11.040

    Article  CAS  PubMed  Google Scholar 

  41. Cao J, Chande C, Kalensee F et al (2021) Microfluidically supported characterization of responses of Rhodococcus erythropolis strains isolated from different soils on Cu-, Ni-, and Co-stress. Braz J Microbiol 52:1405–1415. https://doi.org/10.1007/S42770-021-00495-2/FIGURES/5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Firrincieli A, Presentato A, Favoino G et al (2019) Identification of resistance genes and response to arsenic in rhodococcus aetherivorans BCP1. Front Microbiol 10:888. https://doi.org/10.3389/FMICB.2019.00888/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maass D, Valério A, Lourenço LA et al (2019) Biosynthesis of iron oxide nanoparticles from mineral coal tailings in a stirred tank reactor. Hydrometallurgy 184:199–205. https://doi.org/10.1016/J.HYDROMET.2019.01.010

    Article  CAS  Google Scholar 

  44. Brandão IY, Macedo E, Silva PH et al (2023) Bionanomining of copper-based nanoparticles using pre-processed mine tailings as the precursor. J Environ Manage 338:117804. https://doi.org/10.1016/J.JENVMAN.2023.117804

    Article  Google Scholar 

  45. Todescato D, Maass D, Mayer DA et al (2017) Optimal production of a Rhodococcus erythropolis ATCC 4277 biocatalyst for biodesulfurization and biodenitrogenation applications. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-017-2505-5

    Article  PubMed  Google Scholar 

  46. Brandão IY (2022) Biomining of metals present in metal-rich wastes. Federal University of São Paulo

  47. Banerjee S, Joshi SR, Mandal T, Halder G (2017) Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water. Chemosphere 167:269–281. https://doi.org/10.1016/j.chemosphere.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  48. Krivoruchko A, Kuyukina M, Ivshina I (2019) Advanced Rhodococcus biocatalysts for environmental biotechnologies. Catalysts 9:236. https://doi.org/10.3390/CATAL9030236

    Article  Google Scholar 

  49. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. https://doi.org/10.1088/0957-4484/25/13/135101

    Article  PubMed  Google Scholar 

  50. Classen T, Pietruszka J, Schuback SM (2013) A new multicopper oxidase from Gram-positive bacterium Rhodococcus erythropolis with activity modulating methionine rich tail. Protein Expr Purif 89:97–108. https://doi.org/10.1016/J.PEP.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  51. Applerot G, Lellouche J, Lipovsky A et al (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8:3326–3337. https://doi.org/10.1002/SMLL.201200772

    Article  CAS  PubMed  Google Scholar 

  52. Bayandina EA, Glebov GG, Kuyukina MS, Ivshina IB (2022) Resistance of Rhodococcus ruber biofilms to CuO nanoparticles depending on exopolymer matrix composition. Acta Biomed Sci 7:100–109. https://doi.org/10.29413/ABS.2022-7.5-1.11

    Article  Google Scholar 

  53. Ahamed M, Alhadlaq HA, Khan MAM et al (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014:1–4. https://doi.org/10.1155/2014/637858

    Article  CAS  Google Scholar 

  54. De Carvalho CCCR, Parreño-Marchante B, Neumann G et al (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-004-1750-z

    Article  PubMed  Google Scholar 

  55. De Carvalho CCCR (2012) Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol 163:125–136. https://doi.org/10.1016/j.resmic.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  56. Uroz S, Chhabra SR, Cámara M et al (2005) N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology (N Y) 151:3313–3322. https://doi.org/10.1099/MIC.0.27961-0/CITE/REFWORKS

    Article  CAS  Google Scholar 

  57. Zhukov DV, Murygina VP, Kalyuzhnyi SV (2007) (2007) Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis. Appl Biochem Microbiol 43:587–592. https://doi.org/10.1134/S0003683807060038

    Article  CAS  Google Scholar 

  58. Suemori A, Nakajima K, Kurane R, Nakamura Y (1995) Degradation of aromatic amino acids by Rhodococcus erythropolis. Lett Appl Microbiol 21:55–59. https://doi.org/10.1111/J.1472-765X.1995.TB01006.X

    Article  CAS  Google Scholar 

  59. Pátek M, Grulich M, Nešvera J (2021) Stress response in Rhodococcus strains. Biotechnol Adv 53:107698. https://doi.org/10.1016/J.BIOTECHADV.2021.107698

    Article  PubMed  Google Scholar 

  60. Shabani MA, Irannajad M, Meshkini M, Azadmehr AR (2019) Investigations on bioleaching of copper and zinc oxide ores. Trans Indian Inst Met 72:609–611. https://doi.org/10.1007/S12666-018-1509-3/TABLES/3

    Article  CAS  Google Scholar 

  61. Vardanyan A, Khachatryan A, Castro L et al (2023) Bioleaching of sulfide minerals by Leptospirillum ferriphilum CC from polymetallic mine (Armenia). Minerals 13:243. https://doi.org/10.3390/MIN13020243/S1

    Article  CAS  Google Scholar 

  62. Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147:212–218. https://doi.org/10.1016/J.JBIOTEC.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  63. Goswami L, Arul Manikandan N, Pakshirajan K, Pugazhenthi G (2017) Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. Biotech. https://doi.org/10.1007/S13205-016-0597-1

    Article  Google Scholar 

  64. Shields-Menard SA, Amirsadeghi M, Sukhbaatar B et al (2015) Lipid accumulation by Rhodococcus rhodochrous grown on glucose. J Ind Microbiol Biotechnol 42:693–699. https://doi.org/10.1007/S10295-014-1564-7

    Article  CAS  PubMed  Google Scholar 

  65. Firrincieli A, Zannoni D, Donini E et al (2022) Transcriptomic analysis of the dual response of rhodococcus aetherivorans BCP1 to inorganic arsenic oxyanions. Appl Environ Microbiol. https://doi.org/10.1128/aem.02209-21

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kuyukina M, Krivoruchko A, Ivshina I (2018) Hydrocarbon- and metal-polluted soil bioremediation: progress and challenges. Microbiol Aust 39:133–136. https://doi.org/10.1071/MA18041

    Article  Google Scholar 

  67. Belfiore C, Curia MV, Farías ME (2018) Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Rev Argent Microbiol 50:311–322. https://doi.org/10.1016/j.ram.2017.07.005

    Article  PubMed  Google Scholar 

  68. Cappelletti M, Fedi S, Zampolli J et al (2016) Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 167:766–773. https://doi.org/10.1016/J.RESMIC.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  69. Maass D, Mayer DA, Moritz DE et al (2015) An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277. Appl Biochem Biotechnol 177:759–770. https://doi.org/10.1007/S12010-015-1764-2/TABLES/5

    Article  CAS  PubMed  Google Scholar 

  70. Wei W, Wang Q, Li A et al (2016) (2016) Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior and mechanism assessment. Sci Rep 6:1–10. https://doi.org/10.1038/srep31575

    Article  CAS  Google Scholar 

  71. Golzar-Ahmadi M, Mousavi SM (2021) Extraction of valuable metals from discarded AMOLED displays in smartphones using Bacillus foraminis as an alkali-tolerant strain. Waste Manage 131:226–236. https://doi.org/10.1016/J.WASMAN.2021.06.006

    Article  CAS  Google Scholar 

  72. Sánchez-Clemente R, Igeño MI, Población AG, et al (2018) Study of pH changes in media during bacterial growth of several environmental strains. Proceedings 2018, 2:1297. https://doi.org/10.3390/PROCEEDINGS2201297

  73. Liu Q, Bai J, feng, Gu W hua, et al (2020) Leaching of copper from waste printed circuit boards using Phanerochaete chrysosporium fungi. Hydrometallurgy 196:105427. https://doi.org/10.1016/J.HYDROMET.2020.105427

    Article  CAS  Google Scholar 

  74. Shetty KV, Srinikethan G (2010) Oxygen mass transfer coefficients in a three-phase pulsed plate bioreactor. Int J Chem React Eng. https://doi.org/10.2202/1542-6580.2248

    Article  Google Scholar 

  75. Mahmoud A, Cézac P, Hoadley AFA et al (2017) A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeterior Biodegradation 119:118–146. https://doi.org/10.1016/j.ibiod.2016.09.015

    Article  CAS  Google Scholar 

  76. Hubau A, Chagnes A, Minier M et al (2019) Recycling-oriented methodology to sample and characterize the metal composition of waste printed circuit boards. Waste Manage 91:62–71. https://doi.org/10.1016/j.wasman.2019.04.041

    Article  CAS  Google Scholar 

  77. Yang T, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97:29–32. https://doi.org/10.1016/j.hydromet.2008.12.011

    Article  CAS  Google Scholar 

  78. Jafari M, Abdollahi H, Shafaei SZ et al (2019) Acidophilic bioleaching: a review on the process and effect of organic–inorganic reagents and materials on its efficiency. Miner Process Extr Metall Rev 40:87–107. https://doi.org/10.1080/08827508.2018.1481063

    Article  CAS  Google Scholar 

  79. Garg H, Nagar N, Ellamparuthy G et al (2019) Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density. Heliyon 5:e02883. https://doi.org/10.1016/j.heliyon.2019.e02883

    Article  PubMed  PubMed Central  Google Scholar 

  80. Akbari S, Ahmadi A (2019) Recovery of copper from a mixture of printed circuit boards (PCBs) and sulphidic tailings using bioleaching and solvent extraction processes. Chem Eng Process - Process Intensif 142:107584. https://doi.org/10.1016/J.CEP.2019.107584

    Article  CAS  Google Scholar 

  81. Amiri F, Mousavi SM, Yaghmaei S (2011) Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum. Sep Purif Technol 80:566–576. https://doi.org/10.1016/j.seppur.2011.06.012

    Article  CAS  Google Scholar 

  82. Pradhan JK, Kumar S (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manage Res 30:1151–1159. https://doi.org/10.1177/0734242X12437565

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Danielle Maass is thankful to São Paulo Research Foundation (FAPESP) for research grant #2019/07659-4. Igor Yannick das Neves Vasconcellos Brandão acknowledges his master's fellowship provided by the São Paulo Research Foundation (FAPESP) under project number #2019/19144-9.

Author information

Authors and Affiliations

Authors

Contributions

Igor Yannick das Neves Vasconcellos Brandão: investigation, data curation, writing-original draft, validation. Pedro Henrique Barboza de Souza Silva: investigation. Tayna Vale Castori: investigation. Yasmin Tavares de Souza: investigation. Ricardo Gabbay de Souza: writing-review & editing. Aline Fontana Batista: methodology. Sergio Luis Graciano Petroni: data curation, writing-review & editing. Talita Corrêa Nazareth Zanutto: data curation. Claudia Barbosa Ladeira de Campos: writing-review & editing. Danielle Maass: conceptualization, methodology, writing-review & editing, supervision, funding acquisition.

Corresponding author

Correspondence to Danielle Maass.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

das Neves Vasconcellos Brandão, I.Y., de Souza Silva, P.H.B., Castori, T.V. et al. Rhodococcus erythropolis ATCC 4277 behavior against different metals and its potential use in waste biomining. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-03048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-03048-7

Keywords

Navigation