Log in

Enhancing menaquinone-7 biosynthesis through strengthening precursor supply and product secretion

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Menaquinone-7 (MK-7) is an important class of vitamin K2 that is essential in human health and can prevent osteoporosis and cardiovascular disease. However, due to the complex synthesis pathway, the synthesis efficiency is low. The main objective of this study was to explore the effect of enhanced supply of precursors in Bacillus natto. Three precursors of pyruvate, shikimic acid, and sodium glutamate were chosen to investigate the effect of enhanced supply of precursors on MK-7 synthesis. Then, the optimal concentrations, different combinations, and different adding times were systematically studied, respectively. Results showed that the combination of shikimic acid and sodium glutamate could boost MK-7 production by 2 times, reaching 50 mg/L of MK-7 titer and 0.52 mg/(L·h) of MK-7 productivity. Furthermore, adding shikimic acid and sodium glutamate initially and feeding pyruvate at 48 h and 72 h increased MK-7 production to 58 mg/L. At the same time, the expression of the three related genes was also significantly upregulated. Subsequently, a new fermentation strategy combining the precursors enhancement and product secretion was proposed to enhance MK-7 yield and MK-7 productivity to 63 mg/L and 0.45 mg/(L·h). This study proposed a new fermentation regulation strategy for the enhancement of vitamin K2 biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available from the corresponding author upon reasonable request.

References

  1. Mahdinia E, Demirci A, Berenjian A (2017) Production and application of menaquinone-7 (vitamin K2): a new perspective. World J Microbiol Biotechnol 33:2

    Article  PubMed  Google Scholar 

  2. Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C (2013) The role of menaquinones (vitamin K(2)) in human health. Br J Nutr 110:1357–1368

    Article  CAS  PubMed  Google Scholar 

  3. Walther B, Karl JP, Booth SL, Boyaval P (2013) Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 4:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Szterk A, Zmyslowski A, Bus K (2018) Identification of cis/trans isomers of menaquinone-7 in food as exemplified by dietary supplements. Food Chem 243:403–409

    Article  CAS  PubMed  Google Scholar 

  5. Efsa Panel on Dietetic Products N, Allergies, Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle HJ, Naska A, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjodin A, Stern M, Tome D, Van Loveren H, Vinceti M, Willatts P, Lamberg-Allardt C, Przyrembel H, Tetens I, Dumas C, Fabiani L, Ioannidou S, Neuhauser-Berthold M (2017) Dietary reference values for vitamin K. EFSA J 15:e04780

    Google Scholar 

  6. Koziol-Kozakowska A, Maresz K (2022) The impact of vitamin K2 (menaquionones) in children’s health and diseases: a review of the literature. Children (Basel) 9:1–16

    Google Scholar 

  7. Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, Maresz K, Kramann R, Schurgers L (2019) Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int J Mol Sci 20:896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cui S, Lv X, Wu Y, Li J, Du G, Ledesma-Amaro R, Liu L (2019) Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. Acs Synth Biol 8:1826–1837

    Article  CAS  PubMed  Google Scholar 

  9. Berenjian A, Mahanama R, Kavanagh J, Dehghani F (2015) Vitamin K series: current status and future prospects. Crit Rev Biotechnol 35:199–208

    Article  CAS  PubMed  Google Scholar 

  10. Shea MK, Holden RM (2012) Vitamin K status and vascular calcification: evidence from observational and clinical studies. Adv Nutr 3:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sato T, Inaba N, Yamashita T (2020) MK-7 and its effects on bone quality and strength. Nutrients 12:965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bergeland T, Nordstrand S, Aukrust IR (2019) Commentary on method for detection of menaquinone-7 in dietary supplements. Food Chem 292:346–347

    Article  CAS  PubMed  Google Scholar 

  13. Baj A, Wałejko P, Kutner A, Kaczmarek Ł, Morzycki JW, Witkowski S (2016) Convergent synthesis of menaquinone-7 (MK-7). Org Process Res Dev 20:1026–1033

    Article  CAS  Google Scholar 

  14. Wang H, Liu H, Wang L, Zhao GH, Tang HF, Sun XW, Ni WF, Yang Q, Wang P, Zheng ZM (2019) Improvement of menaquinone-7 production by Bacillus subtilis natto in a novel residue-free medium by increasing the redox potential. Appl Microbiol Biot 103:7519–7535

    Article  CAS  Google Scholar 

  15. Kang MJ, Baek KR, Lee YR, Kim GH, Seo SO (2022) Production of vitamin K by wild-type and engineered microorganisms. Microorganisms 10:554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahdinia E, Mamouri SJ, Puri VM, Demirci A, Berenjian A (2019) Modeling of vitamin K (Menaquinoe-7) fermentation by Bacillus subtilis natto in biofilm reactors. Biocatal Agric Biotechnol 17:196–202

    Article  Google Scholar 

  17. Luo M-m, Ren L-j, Chen S-l, Ji X-j, Huang H (2017) Effect of media components and morphology of Bacillus natto on menaquinone-7 synthesis in submerged fermentation. Biotechnol Bioprocess Eng 21:777–786

    Article  Google Scholar 

  18. Zhang B, Peng C, Lu J, Hu X, Ren L (2022) Enhancing menaquinone-7 biosynthesis by adaptive evolution of Bacillus natto through chemical modulator. Bioresources and Bioprocessing 9:120

    Article  Google Scholar 

  19. Xu J-Z, Yan W-L, Zhang W-G (2017) Enhancing menaquinone-7 production in recombinant Bacillus amyloliquefaciens by metabolic pathway engineering. RSC Adv 7:28527–28534

    Article  CAS  ADS  Google Scholar 

  20. Lv X, Xu H, Yu H (2013) Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol 97:2357–2365

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, McClure DD, Somerville MV, Proschogo NW, Dehghani F, Kavanagh JM, Coleman NV (2019) Metabolic engineering of the MEP pathway in Bacillus subtilis for increased biosynthesis of menaquinone-7. ACS Synth Biol 8:1620–1630

    Article  CAS  PubMed  Google Scholar 

  22. Ding X, Zheng Z, Zhao G, Wang L, Wang H, Yang Q, Zhang M, Li L, Wang P (2022) Bottom-up synthetic biology approach for improving the efficiency of menaquinone-7 synthesis in Bacillus subtilis. Microb Cell Fact 21:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma XC, Zhu SY, Luo MM, Hu XC, Peng C, Huang H, Ren LJ (2019) Intracellular response of Bacillus natto in response to different oxygen supply and its influence on menaquinone-7 biosynthesis. Bioprocess Biosyst Eng 42:817–827

    Article  CAS  PubMed  Google Scholar 

  24. Kamao M, Suhara Y, Tsugawa N, Okano T (2005) Determination of plasma vitamin K by high-performance liquid chromatography with fluorescence detection using Vitamin K analogs as internal standards. J Chromatogr B Analyt Technol Biomed Life Sci 816:41–48

    Article  CAS  PubMed  Google Scholar 

  25. Peng C, Zhu S, Lu J, Hu X, Ren L (2020) Transcriptomic analysis of gene expression of menaquinone-7 in Bacillus subtilis natto toward different oxygen supply. Food Res Int 137:109700

    Article  CAS  PubMed  Google Scholar 

  26. Wu J, Li W, Zhao SG, Qian SH, Wang Z, Zhou MJ, Hu WS, Wang J, Hu LX, Liu Y, Xue ZL (2021) Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis. Microb Cell Fact 20:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang S, Cao Y, Sun L, Li C, Lin X, Cai Z, Zhang G, Song H (2019) Modular pathway engineering of Bacillus subtilis to promote De Novo biosynthesis of menaquinone-7. ACS Synth Biol 8:70–81

    Article  CAS  PubMed  Google Scholar 

  28. Meganathan R (1981) Enzymes from Escherichia coli synthesize o-succinylbenzoic acid, an intermediate in menaquinone (vitamin K2) biosynthesis. J Biol Chem 256:9386–9388

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Wang YL, Lu LP, Zhang BB, Xu GR (2014) Enhanced production of Monacolin K by addition of precursors and surfactants in submerged fermentation of Monascus purpureus 9901. Biotechnol Appl Biochem 61:202–207

    Article  CAS  PubMed  Google Scholar 

  30. Wei XC, Liu CQ, Zhang RY, Zheng GF, An FL, Lu YH (2020) Improvement of curvulamine production by precursors co-addition strategy in liquid culture of marine-derived fungus Curvularia sp. IFB-Z10. Appl Biochem Biotechnol 190:73–89

    Article  CAS  PubMed  Google Scholar 

  31. Zhang BB, Cheung PC (2011) Use of stimulatory agents to enhance the production of bioactive exopolysaccharide from pleurotus tuber-regium by submerged fermentation. J Agric Food Chem 59:1210–1216

    Article  CAS  PubMed  Google Scholar 

  32. Lal N, Seifan M, Berenjian A (2022) Optimisation of the fermentation media to enhance the production of the bioactive isomer of vitamin menaquinone-7. Bioprocess Biosyst Eng 45:1371–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mahdinia E, Demirci A, Berenjian A (2017) Strain and plastic composite support (PCS) selection for vitamin K (Menaquinone-7) production in biofilm reactors. Bioprocess Biosyst Eng 40:1507–1517

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Shang C, Zhang H, Sun C, Zhang G, Liu L, Li C, Li A, Du P (2022) Effects of alkali stress on the growth and menaquinone-7 metabolism of Bacillus subtilis natto. Front Microbiol 13:899802

    Article  PubMed  PubMed Central  Google Scholar 

  35. Berenjian A, Mahanama R, Talbot A, Biffin R, Regtop H, Valtchev P, Kavanagh J, Dehghani F (2011) Efficient media for high menaquinone-7 production: response surface methodology approach. New Biotechnol 28:665–672

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Key Research and Development Program of China (No. 2019YFA0905700), the National Natural Science Foundation of China No. 21878151), the Natural Science Foundation of Jiangsu Province (BK20211535), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTD2213), and Jiangsu Province “333” project (2022).

Author information

Authors and Affiliations

Authors

Contributions

Hu PC and Peng C designed the research, Ren LJ concept for this study and overall supervision of all experiments done, Zhang B and MRB conducted the research and analyzed the data, Hu XC helped with the statistics, Hu PC wrote the article.

Corresponding author

Correspondence to Lu**g Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Peng, C., Zhang, B. et al. Enhancing menaquinone-7 biosynthesis through strengthening precursor supply and product secretion. Bioprocess Biosyst Eng 47, 211–222 (2024). https://doi.org/10.1007/s00449-023-02955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02955-5

Keywords

Navigation