Log in

Bioprocess development of a stable FUT8−/−-CHO cell line to produce defucosylated anti-HER2 antibody

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In recent years, an increasing number of defucosylated therapeutic antibodies have been applied in clinical practices due to their better efficacy compared to fucosylated counterparts. The establishment of stable and clonal manufacturing cell lines is the basis of therapeutic antibodies production. Bioprocess development of a new cell line is necessary for its future applications in the biopharmaceutical industry. We engineered a stable cell line expressing defucosylated anti-HER2 antibody based on an established α-1,6-fucosyltransferase (FUT8) gene knockout CHO-S cell line. The optimization of medium and feed was evaluated in a small-scale culture system. Then the optimal medium and feed were scaled up in a bioreactor system. After fed-batch culture over 13 days, we evaluated the cell growth, antibody yield, glycan compositions and bioactivities. The production of anti-HER2 antibody from the FUT8 gene knockout CHO-S cells in the bioreactor increased by 37% compared to the shake flask system. The N-glycan profile of the produced antibody was consistent between the bioreactor and shake flask system. The antibody-dependent cellular cytotoxicity activity of the defucosylated antibody increased 14-fold compared to the wild-type antibody, which was the same as our previous results. The results of our bioprocess development demonstrated that the engineered cell line could be developed to a biopharmaceutical industrial cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weiner GJ (2015) Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 15(6):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aggarwal SR (2014) What's fueling the biotech engine—2012 to 2013. Nat Biotechnol 32(1):32–39

    Article  CAS  PubMed  Google Scholar 

  3. Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100(8):3451–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170

    Article  CAS  PubMed  Google Scholar 

  5. Hiller GW, Ovalle AM, Gagnon MP, Curran ML, Wang W (2017) Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Biotechnol Bioeng 114(7):1438–1447

    Article  CAS  PubMed  Google Scholar 

  6. Vogel JH, Anspach B, Kroner KH, Piret JM, Haynes CA (2002) Controlled shear affinity filtration (CSAF): A new technology for integration of cell separation and protein isolation from mammalian cell cultures. Biotechnol Bioeng 78(7):805–813

    Article  CAS  Google Scholar 

  7. Reusch D, Tejada ML (2015) Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25(12):1325–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A, Yokoi H, Nakamura K, Shitara K (2004) Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 is independent of Fc gamma RIIIa functional polymorphism. Clin Cancer Res 10(18):6248–6255

    Article  CAS  PubMed  Google Scholar 

  9. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473

    Article  CAS  PubMed  Google Scholar 

  10. Okazaki A, Shoji-Hosaka E, Nakamura K, Wakitani M, Uchida K, Kakita S, Tsumoto K, Kumagai I, Shitara K (2004) Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcγRIIIa. J Mol Biol 336(5):1239–1249

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Han L, Zong H, Ding K, Yuan Y, Bai J, Zhou Y, Zhang B, Zhu J (2018) Enhanced production of anti-PD1 antibody in CHO cells through transient co-transfection with anti-apoptotic genes Bcl-xL and Mcl-1. Bioprocess Biosyst Eng 41(5):633–640

    Article  CAS  PubMed  Google Scholar 

  12. Wong AW, Baginski TK, Reilly DE (2010) Enhancement of DNA uptake in FUT8-deleted CHO cells for transient production of afucosylated antibodies. Biotechnol Bioeng 106(5):751–763

    Article  CAS  PubMed  Google Scholar 

  13. Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622

    Article  CAS  PubMed  Google Scholar 

  14. Zong HF, Han L, Ding K, Wang JX, Sun T, Zhang XY, Cagliero C, Jiang H, **e YQ, Xu JR, Zhang BH, Zhu JW (2017) Producing defucosylated antibodies with enhanced in vitro antibody-dependent cellular cytotoxicity via FUT8 knockout CHO-S cells. Eng Life Sci 17(7):801–808

    Article  CAS  Google Scholar 

  15. Sun T, Li C, Han L, Jiang H, **e Y, Zhang B, Qian X, Lu H, Zhu J (2015) Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody. Eng Life Sci 15(6):660–666

    Article  CAS  Google Scholar 

  16. Hober S, Nord K, Linhult M (2007) Protein A chromatography for antibody purification. J Chromatogr B 848(1):40–47

    Article  CAS  Google Scholar 

  17. Ding K, Han L, Zong H, Chen J, Zhang B, Zhu J (2017) Production process reproducibility and product quality consistency of transient gene expression in HEK293 cells with anti-PD1 antibody as the model protein. Appl Microbiol Biot 101(5):1889–1898

    Article  CAS  Google Scholar 

  18. Idusogie EE, Presta LG, Gazzano-Santoro H, Totpal K, Wong PY, Ultsch M, Meng YG, Mulkerrin MG (2000) Map** of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J Immunol 164(8):4178–4184

    Article  CAS  PubMed  Google Scholar 

  19. Junttila TT, Parsons K, Olsson C, Lu YM, **n Y, Theriault J, Crocker L, Pabonan O, Baginski T, Meng G, Totpal K, Kelley RF, Sliwkowski MX (2010) Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res 70(11):4481–4489

    Article  CAS  PubMed  Google Scholar 

  20. Collins D, O'donovan N, McGowan P, O'sullivan F, Duffy M, Crown J (2011) Trastuzumab induces antibody-dependent cell-mediated cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Ann Oncol 23(7):1788–1795

    Article  PubMed  Google Scholar 

  21. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Templeton N, Smith KD, McAtee-Pereira AG, Dorai H, Betenbaugh MJ, Lang SE, Young JD (2017) Application of 13C flux analysis to identify high-productivity CHO metabolic phenotypes. Metab Eng 43:218–225

    Article  CAS  PubMed  Google Scholar 

  23. Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13(5):598–609

    Article  CAS  PubMed  Google Scholar 

  24. Ma NN, Ellet J, Okediadi C, Hermes P, McCormick E, Casnocha S (2009) A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: improved productivity and lactate metabolism. Biotechnol Progr 25(5):1353–1363

    Article  CAS  Google Scholar 

  25. Luo J, Vijayasankaran N, Autsen J, Santuray R, Hudson T, Amanullah A, Li F (2012) Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng 109(1):146–156

    Article  CAS  PubMed  Google Scholar 

  26. Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  CAS  PubMed  Google Scholar 

  27. Cai W-F, Zhang C, Wu Y-Q, Zhuang G, Ye Z, Zhang C-S, Lin S-C (2018) Glutaminase GLS1 senses glutamine availability in a non-enzymatic manner triggering mitochondrial fusion. Cell Res 28(8):865–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen P, Harcum SW (2005) Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 117(3):277–286

    Article  CAS  PubMed  Google Scholar 

  29. Hong MS, Severson KA, Jiang M, Lu AE, Love JC, Braatz RD (2018) Challenges and opportunities in biopharmaceutical manufacturing control. Comput Chem Eng 110:106–114

    Article  CAS  Google Scholar 

  30. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86

    Article  CAS  PubMed  Google Scholar 

  31. Obom KM, Magno A, Cummings PJ (2013) Operation of a benchtop bioreactor. JoVE J Vis Exp 79:e50582

    Google Scholar 

  32. O’Mara P, Farrell A, Bones J, Twomey K (2018) Staying alive! Sensors used for monitoring cell health in bioreactors. Talanta 176:130–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by National Science Foundation of China [Grant number: 81502969].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohong Zhang.

Ethics declarations

Conflict of interest

All the authors reviewed and agreed to submit this manuscript. The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The study does not contain experiments using animals and human studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Zong, H., Bai, J. et al. Bioprocess development of a stable FUT8−/−-CHO cell line to produce defucosylated anti-HER2 antibody. Bioprocess Biosyst Eng 42, 1263–1271 (2019). https://doi.org/10.1007/s00449-019-02124-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02124-7

Keywords

Navigation