Log in

Improvement in the docosahexaenoic acid production of Schizochytrium sp. S056 by replacement of sea salt

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Schizochytrium is a marine microalga that requires high concentrations of sea salt for growth, although problems arise with significant amounts of chloride ions in the culture medium, which corrodes the fermenters. In this work, we evaluated that cell growth and docosahexaenoic acid (DHA) production can be improved when using 1 % (w/v) sodium sulfate instead of 2 % (w/v) sea salt in the culture medium for Schizochytrium sp. S056. In practice, the use of sodium sulfate as the sodium salt led to chloride ion levels in the medium that can be completely removed, thus avoiding fermenter corrosion during Schizochytrium sp. S056 growth, reducing cost and increasing DHA production, and simplifying the disposal of fermentation wastewater. Additionally, we demonstrated that the osmolality of growth media did not play a crucial role in the production of DHA. These findings may be significantly important to companies involved in production of PUFAs by marine microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, Ezzati M (2009) The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med 6:e1000058

    Article  Google Scholar 

  2. Janssen CI, Kiliaan AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53:1–17

    Article  CAS  Google Scholar 

  3. Mohajeri MH, Troesch B, Weber P (2015) Inadequate supply of vitamins and DHA in the elderly: implications for brain aging and Alzheimer-type dementia. Nutrition 31:261–275

    Article  CAS  Google Scholar 

  4. Siriwardhana N, Kalupahana NS, Moustaid-Moussa N (2012) Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Adv Food Nutr Res 65:211–222

    Article  Google Scholar 

  5. Yang P, Jiang Y, Fischer SM (2014) Prostaglandin E3 metabolism and cancer. Cancer Lett 348:1–11

    Article  CAS  Google Scholar 

  6. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh ELK, Silver DL (2014) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509:503–506

    Article  CAS  Google Scholar 

  7. Lagarde M, Hachem M, Bernoud-Hubac N, Picq M, Véricel E, Guichardant M (2015) Biological properties of a DHA-containing structured phospholipid (AceDoPC) to target the brain. Prostag Leukotr Ess 92:63–65

    Article  CAS  Google Scholar 

  8. Gunstone FD (1996) Fatty acid and lipid chemistry. Blackie Academic, London

    Book  Google Scholar 

  9. Wu ST, Yu ST, Lin LP (2005) Effects of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem 40:3103–3108

    Article  CAS  Google Scholar 

  10. Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  CAS  Google Scholar 

  11. Pauly D, Christensen V, Guénette S, Pitcher TJ, Sumaila UR, Walters CJ, Watson R, Zeller D (2002) Towards sustainability in world fisheries. Nature 418:689–695

    Article  CAS  Google Scholar 

  12. Hooper L, Thompson RL, Harrison RA, Summerbell CD, Ness AR, Moore HJ, Worthington HV, Durrington PN, Higgins J, Capps NE (2006) Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. Brit Med J 332:752–760

    Article  CAS  Google Scholar 

  13. Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    Article  CAS  Google Scholar 

  14. Ratledge C (2012) Omega-3 biotechnology: errors and omissions. Biotechnol Adv 30:1746–1747

    Article  Google Scholar 

  15. Chauton MS, Reitan KI, Norsker NH, Tveterås R, Kleivdal HT (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436:95–103

    Article  CAS  Google Scholar 

  16. Barclay W, Weaver C, Metz J (2005) Development of a docosahexaenoic acid production technology using Schizochytrium: a historical perspective. In: Cohen Z, Ratledge C (eds) Single cell oils, 1st edn. AOCS Press, Champaign, pp 36–52

    Google Scholar 

  17. Barclay W, Weaver C, Metz J, Hansen J (2010) Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single cell oils, 2nd edn. AOCS Press, Champaign, pp 75–96

    Chapter  Google Scholar 

  18. Patil KP, Gogate PR (2015) Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chem Eng J 268:187–196

    Article  CAS  Google Scholar 

  19. Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76

    Article  CAS  Google Scholar 

  20. Zhu L, Zhang X, Ji L, Song X, Kuang C (2007) Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem 42:210–214

    Article  CAS  Google Scholar 

  21. Yang H, Lu C, Chen S, Chen Y, Chen Y (2010) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12:173–185

    Article  CAS  Google Scholar 

  22. Hong DD, Anh HTL, Thu NTH (2011) Study on biological characteristics of heterotrophic marine microalga-Schizochytrium mangrovei PQ6 isolated from Phu Quoc Island, Kien Giang Province, Vietnam. J Phycol 47:944–954

    Article  CAS  Google Scholar 

  23. Shene C, Leyton A, Rubilar M, Pinelo M, Acevedo F, Morales E (2013) Production of lipids and docosahexasaenoic acid (DHA) by a native Thraustochytrium strain. Eur J Lipid Sci Technol 115:890–900

    Article  CAS  Google Scholar 

  24. Foley RT (1970) Role of the Chloride Ion in Iron Corrosion. Corrosion 26:58–70

    Article  CAS  Google Scholar 

  25. Altun H, Sen S (2004) Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy. Mater Design 25:637–643

    Article  CAS  Google Scholar 

  26. Zhao M, Liu M, Song G, Atrens A (2008) Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros Sci 50:3168–3178

    Article  CAS  Google Scholar 

  27. Unagul P, Assantachai C, Phadungruengluij S, Pongsuteeragul T, Suphantharika M, Verduyn C (2006) Biomass and docosahexaenoic acid formation by Schizochytrium mangrovei Sk-02 at low salt concentrations. Bot Marina 49:182–190

    Article  CAS  Google Scholar 

  28. Shabala L, McMeekin T, Shabala S (2013) Thraustochytrids can be grown in low-salt media without affecting PUFA production. Mar Biotechnol 15:437–444

    Article  CAS  Google Scholar 

  29. Zarnowski R, Suzuki Y (2004) Expedient Soxhlet extraction of resorcinolic lipids from wheat grains. J Food Compos Anal 17:649–663

    Article  CAS  Google Scholar 

  30. Indarti E, Majid MIA, Hashim R, Chong A (2005) Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J Food Compos Anal 18:161–170

    Article  CAS  Google Scholar 

  31. Ren L, Huang H, **ao A, Lian M, ** L, Ji X (2009) Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess Biosyst Eng 32:837–843

    Article  CAS  Google Scholar 

  32. Zhou PP, Lu MB, Li W, Yu LJ (2010) Microbial production of docosahexaenoic acid by a low temperature-adaptive strain Thraustochytriidae sp. Z105: screening and optimization. J Basic Microbiol 50:380–387

    Article  CAS  Google Scholar 

  33. Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  34. Dötsch A, Severin J, Alt W, Galinski EA, Kreft J (2008) A mathematical model for growth and osmoregulation in halophilic bacteria. Microbiol 154:2956–2969

    Article  Google Scholar 

  35. Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684

    Article  CAS  Google Scholar 

  36. Shabala L, McMeekin T, Shabala S (2009) Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environ Microbiol 11:1835–1843

    Article  CAS  Google Scholar 

  37. Liu Y, Singh P, Sun Y, Luan S, Wang G (2014) Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China. Appl Microbiol Biot 98:3241–3255

    Article  CAS  Google Scholar 

  38. Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1434

    Article  CAS  Google Scholar 

  39. Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169

    Article  CAS  Google Scholar 

  40. Min KH, Lee HH, Anbu P, Chaulagain BP, Hur BK (2012) The effects of culture condition on the growth property and docosahexaenoic acid production from Thraustochytrium aureum ATCC 34304. Korean J Chem Eng 29:1211–1215

    Article  CAS  Google Scholar 

  41. Kang D, Jeh E, Seo J, Chun B, Hur B (2007) Effect of salt concentration on production of polyunsaturated fatty acids in Thraustochytrium aureum ATCC 34304. Korean J Chem Eng 24:651–654

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2014AA021702), the National Natural Science Foundation (No. J1103514/J0106), and the Seventh of 3551 Talent Program of Wuhan East Lake High-tech Development Zone. In addition, the authors would like to thank the Analytical and Testing Center of Huazhong University of Science and Technology for the GC–MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longjiang Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhou, P., Zhu, Y. et al. Improvement in the docosahexaenoic acid production of Schizochytrium sp. S056 by replacement of sea salt. Bioprocess Biosyst Eng 39, 315–321 (2016). https://doi.org/10.1007/s00449-015-1517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1517-1

Keywords

Navigation