Log in

Temporal alterations in cardiac fibroblast function following induction of pressure overload

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis. While numerous studies have focused on the mechanisms of myocyte hypertrophy, comparatively little is known regarding the response of the interstitial fibroblasts to increased cardiovascular load. Fibroblasts are the most numerous cell type in the mammalian myocardium and have long been recognized as producing the majority of the myocardial extracellular matrix. It is only now becoming appreciated that other aspects of fibroblast behavior are important to overall cardiac function. The present studies were performed to examine the temporal alterations in fibroblast activity in response to increased cardiovascular load. Rat myocardial fibroblasts were isolated at specific time-points (3, 7, 14, and 28 days) after induction of pressure overload by abdominal aortic constriction. Bioassays were performed to measure specific parameters of fibroblast function including remodeling and contraction of 3-dimensional collagen gels, migration, and proliferation. In addition, the expression of extracellular matrix receptors of the integrin family was examined. Myocardial hypertrophy and fibrosis were evident within 7 days after constriction of the abdominal aorta. Collagen gel contraction, migration, and proliferation were enhanced in fibroblasts from pressure-overloaded animals compared to fibroblasts from sham animals. Differences in fibroblast function and protein expression were evident within 7 days of aortic constriction, concurrent with the onset of hypertrophy and fibrosis of the intact myocardium. These data provide further support for the idea that rapid and dynamic changes in fibroblast phenotype accompany and contribute to the progression of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293:H1883–H1891

    Article  CAS  PubMed  Google Scholar 

  • Baudino TA, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: Friend or foe? Am J Physiol Heart Circ Physiol 291:H1015–H1026

    Article  CAS  PubMed  Google Scholar 

  • Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76:1274–1278

    Article  CAS  PubMed  Google Scholar 

  • Borg TK, Johnson LD, Lill PH (1983) Specific attachment of collagen to cardiac myocytes: in vivo and in vitro. Dev Biol 97:417–423

    Article  CAS  PubMed  Google Scholar 

  • Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687

    Article  CAS  PubMed  Google Scholar 

  • Burgess ML, Carver WE, Terracio L, Wilson SP, Wilson MA, Borg TK (1994) Integrin-mediated collagen gel contraction by cardiac fibroblasts. Effects of angiotensin II. Circ Res 74:291–298

    CAS  PubMed  Google Scholar 

  • Burgess ML, Terracio L, Hirozane T, Borg TK (2002) Differential integrin expression by cardiac fibroblasts from hypertensive and exercise-trained rat hearts. Cardiovasc Pathol 11:78–87

    Article  CAS  PubMed  Google Scholar 

  • Butt RP, Laurent GJ, Bishop JE (1995) Mechanical load and polypeptide growth factors stimulate cardiac fibroblast activity. Ann NY Acad Sci 752:387–393

    Article  CAS  PubMed  Google Scholar 

  • Carver W, Nagpal ML, Nachtigal M, Borg TK, Terracio L (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69:116–122

    CAS  PubMed  Google Scholar 

  • Carver W, Molanao I, Reaves TA, Borg TK, Terracio L (1995) Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. J Cell Physiol 165:425–437

    Article  CAS  PubMed  Google Scholar 

  • Catalucci D, Latronico MV, Ellingsen O, Condorelli G (2008) Physiological myocardial hypertrophy: how and why. Front Biosci 13:312–324

    Article  CAS  PubMed  Google Scholar 

  • Chapman D, Weber KT, Eghbali M (1990) Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circ Res 67:787–794

    CAS  PubMed  Google Scholar 

  • Diaz-Araya G, Borg TK, Lavandero S, Loftis MJ, Carver W (2003) IGF-1 modulation of rat cardiac fibroblast behavior and gene expression is age-dependent. Cell Commun Adhes 10:155–165

    CAS  PubMed  Google Scholar 

  • Flack EC, Lindsey ML, Squires CE, Kaplan BS, Stroud RE, Clark LL, Escobar PG, Yarbrough WM, Spinale FG (2006) Alterations in cultured myocardial fibroblast function following the development of left ventricular failure. J Mol Cell Cardiol 40:474–483

    Article  CAS  PubMed  Google Scholar 

  • Guidry C, Grinnell F (1987) Contraction of hydrated collagen gels by fibroblasts: evidence for two mechanisms by which collagen fibrils are stabilized. Coll Relat Res 6:515–529

    CAS  PubMed  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signaling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2006) Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol 50:255–266

    Article  PubMed  Google Scholar 

  • Jane-Lise S, Corda S, Chassagne C, Rappaport L (2000) The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Fail Rev 5:239–250

    Article  CAS  PubMed  Google Scholar 

  • Kaufman J, Graf BA, Leung EC, Pollock SJ, Koumas L, Reddy SY, Blieden TM, Smith TJ, Phillips RP (2001) Fibroblasts as sentinel cells: role of CDcd40-CDcd40 ligand system in fibroblast activation and lung inflammation and fibrosis. Chest 120:53S–55S

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overload rats. Circulation 106:130–135

    Article  CAS  PubMed  Google Scholar 

  • Lee AA, Delhaas T, McCulloch AD, Villarreal FJ (1999) Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31:1833–1843

    Article  CAS  PubMed  Google Scholar 

  • Leslie KO, Taatjes DJ, Schwarz J, von Turkovich M, Low RB (1991) Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit. Am J Pathol 139:207–216

    CAS  PubMed  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Fedak PW, Dai X, Du C, Zhou YQ, Henkelman M, Mongroo PS, Lau A, Yamabi H, Hinek A, Husain M, Hannigan G, Coles JG (2006) Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation 114:2271–2279

    Article  CAS  PubMed  Google Scholar 

  • Machackova J, Barta J, Dhalla NS (2006) Myofibrillar remodeling in cardiac hypertrophy, heart failure and cardiomyopathies. Can J Cardiol 22:953–968

    PubMed  Google Scholar 

  • MacKenna D, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46:257–263

    Article  CAS  PubMed  Google Scholar 

  • Marganski WA, De Biase VM, Burgess ML, Dembo M (2003) Demonstration of alteredt contractile activity in hypertensive heart disease. Cardiovasc Res 60:547–556

    Article  CAS  PubMed  Google Scholar 

  • Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds and signaling: tissue architecture regulates development, homeostasis and cancer. Annu Rev Cell Dev Biol 22:287–309

    Article  CAS  PubMed  Google Scholar 

  • Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278

    Article  CAS  PubMed  Google Scholar 

  • Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Schluter KD, Wollert KC (2004) Synchronization and integration of multiple hypertrophic pathways in the heart. Cardiovasc Res 63:367-372

    Google Scholar 

  • Sedmera D, Thompson RP, Kolar F (2003) Effect of pressure loading on heart growth in neonatal rats. J Mol Cell Cardiol 35:301–309

    Article  CAS  PubMed  Google Scholar 

  • Silzle T, Randolph GJ, Kreutz M, Kunz-Schughart LA (2004) The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int J Cancer 108:173–180

    Article  CAS  PubMed  Google Scholar 

  • Siri FM (1988) Sympathetic changes during development of cardiac hypertrophy in aortic-constricted rats. Am J Physiol 255:H452–H457

    CAS  PubMed  Google Scholar 

  • Squires CE, Escobar GP, Payne JF, Leonardi RA, Goshom DK, Sheats NJ, Mains IM, Mingoia JT, Flack EC, Lindsey ML (2005) Altered fibroblast function following myocardial infarction. J Mol Cell Cardiol 39:699–707

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Weber KT (2000) Infarct scar: a dynamic tissue. Cardiovasc Res 46:250–256

    Article  CAS  PubMed  Google Scholar 

  • Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, Borg TK (1991) Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res 68:734–744

    CAS  PubMed  Google Scholar 

  • Wang J, Chen H, Seth A, McCulloch CA (2003) Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 285:H1871–H1881

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Carver.

Additional information

James A. Stewart, Jr. and Erin P. Massey contributed equally to this manuscript.

This work was funded by a National Institutes of Health grant (HL 083441 to W.C.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, J.A., Massey, E.P., Fix, C. et al. Temporal alterations in cardiac fibroblast function following induction of pressure overload. Cell Tissue Res 340, 117–126 (2010). https://doi.org/10.1007/s00441-010-0943-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0943-2

Keywords

Navigation