Log in

Exceptional points of two-dimensional random walks at multiples of the cover time

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study exceptional sets of the local time of the continuous-time simple random walk in scaled-up (by N) versions \(D_N\subseteq {\mathbb {Z}}^2\) of bounded open domains \(D\subseteq {\mathbb {R}}^2\). Upon exit from \(D_N\), the walk lands on a “boundary vertex” and then reenters \(D_N\) through a random boundary edge in the next step. In the parametrization by the local time at the “boundary vertex” we prove that, at times corresponding to a \(\theta \)-multiple of the cover time of \(D_N\), the sets of suitably defined \(\lambda \)-thick (i.e., heavily visited) and \(\lambda \)-thin (i.e., lightly visited) points are, as \(N\rightarrow \infty \), distributed according to the Liouville Quantum Gravity \(Z^D_\lambda \) with parameter \(\lambda \)-times the critical value. For \(\theta <1\), also the set of avoided vertices (a.k.a. late points) and the set where the local time is of order unity are distributed according to \(Z^D_{\sqrt{\theta }}\). The local structure of the exceptional sets is described as well, and is that of a pinned Discrete Gaussian Free Field for the thick and thin points and that of random-interlacement occupation-time field for the avoided points. The results demonstrate universality of the Gaussian Free Field for these extremal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abe, Y.: Maximum and minimum of local times for two-dimensional random walk. Electron. Commun. Probab. 20, 14 (2015)

    Article  MathSciNet  Google Scholar 

  2. Abe, Y.: Extremes of local times for simple random walks on symmetric trees. Electron. J. Probab. 23, 1–41 (2018)

    Article  MathSciNet  Google Scholar 

  3. Abe, Y., Biskup, M., Lee, S.: Exceptional points of discrete-time random walks in planar domains. ar**v:1911.11810 (2019)

  4. Aldous, D.J.: Threshold limits for cover times. J. Theoret. Probab. 4, 197–211 (1991)

    Article  MathSciNet  Google Scholar 

  5. Belius, D., Rosen, J., Zeitouni, O.: Barrier estimates for a critical Galton–Watson process and the cover time of the binary tree. Ann. Inst. Henri Poincaré Probab. Stat. 55, 127–154 (2019)

    Article  MathSciNet  Google Scholar 

  6. Biskup, M.: Extrema of the two-dimensional discrete Gaussian free field. In: Barlow, M., Slade, G. (eds.) Random Graphs, Phase Transitions, and the Gaussian Free Field SSPROB 2017. Springer Proceedings in Mathematics and Statistics, vol. 304, pp. 163–407. Springer, Cham (2020)

    Google Scholar 

  7. Biskup, M., Louidor, O.: Extreme local extrema of two-dimensional discrete Gaussian free field. Commun. Math. Phys. 345, 271–304 (2016)

    Article  MathSciNet  Google Scholar 

  8. Biskup, M., Louidor, O.: Conformal symmetries in the extremal process of two-dimensional discrete Gaussian free field. Commun. Math. Phys. 375(1), 175–235 (2020)

    Article  MathSciNet  Google Scholar 

  9. Biskup, M., Louidor, O.: Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian free field. Adv. Math. 330, 589–687 (2018)

    Article  MathSciNet  Google Scholar 

  10. Biskup, M., Louidor, O.: On intermediate level sets of two-dimensional discrete Gaussian free field. Ann. Inst. Henri Poincaré 55(4), 1948–1987 (2019)

    Article  MathSciNet  Google Scholar 

  11. Biskup, M., Louidor, O.: A limit law for the most favorite point of simple random walk on a regular tree. ar**v:2111.09513 (2021)

  12. Brydges, D., Fröhlich, J., Spencer, T.: The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys. 83(1), 123–150 (1982)

    Article  MathSciNet  Google Scholar 

  13. Comets, F., Popov, S., Vachkovskaia, M.: Two-dimensional random interlacements and late points for random walks. Commun. Math. Phys. 343, 129–164 (2016)

    Article  MathSciNet  Google Scholar 

  14. Cortines, A., Louidor, O., Saglietti, S.: A scaling limit for the cover time of the binary tree. ar**v:1812.10101 (2018)

  15. Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Thick points for planar Brownian motion and the Erdős–Taylor conjecture on random walk. Acta Math. 186, 239–270 (2001)

    Article  MathSciNet  Google Scholar 

  16. Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Late points for random walks in two dimensions. Ann. Probab. 34, 219–263 (2006)

    Article  MathSciNet  Google Scholar 

  17. Dembo, A., Rosen, J., Zeitouni, O.: Limit law for the cover time of a random walk on a binary tree. ar**v:1906.07276 (2019)

  18. Ding, J.: Asymptotics of cover times via Gaussian free fields: bounded-degree graphs and general trees. Ann. Probab. 42, 464–496 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Ding, J., Lee, J.R., Peres, Y.: Cover times, blanket times, and majorizing measures. Ann. Math. 175, 1409–1471 (2012)

    Article  MathSciNet  Google Scholar 

  20. Dynkin, E.B.: Markov processes as a tool in field theory. J. Funct. Anal. 50, 167–187 (1983)

    Article  MathSciNet  Google Scholar 

  21. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185, 333–393 (2011)

    Article  MathSciNet  Google Scholar 

  22. Eisenbaum, N., Kaspi, H., Marcus, M.B., Rosen, J., Shi, Z.: A Ray–Knight theorem for symmetric Markov processes. Ann. Probab. 28, 1781–1796 (2000)

    Article  MathSciNet  Google Scholar 

  23. Erdős, P., Taylor, S.J.: Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hungar. 11, 137–162 (1960)

    Article  MathSciNet  Google Scholar 

  24. Jego, A.: Thick points of random walk and the Gaussian free field. Electron. J. Probab. 25(32), 1–39 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Jego, A.: Planar Brownian motion and Gaussian multiplicative chaos. Ann. Probab. 48(4), 1597–1643 (2020)

    Article  MathSciNet  Google Scholar 

  26. Jego, A.: Characterisation of planar Brownian multiplicative chaos. ar**v:1909.05067 (2019)

  27. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  28. Knight, F.B.: Random walks and a sojourn density process of Brownian motion. Trans. Am. Math. Soc. 109, 56–86 (1963)

    Article  MathSciNet  Google Scholar 

  29. Lawler, G.F., Werner, W.: The Brownian loop soup. Probab. Theory Rel. Fields 128, 565–588 (2004)

    Article  MathSciNet  Google Scholar 

  30. Le Jan, Y.: Markov paths, loops and fields. In: École d’Été de Probabilités de Saint–Flour XXXVII-2008. Lecture Notes in Mathematics, Springer (2011)

  31. Lupu, T.: From loop clusters and random interlacements to the free field. Ann. Probab. 44(3), 2117–2146 (2016)

    Article  MathSciNet  Google Scholar 

  32. Okada, I.: Frequently visited sites of the inner boundary of simple random walk range. Stoch. Process. Appl. 126, 1412–1432 (2016)

    Article  MathSciNet  Google Scholar 

  33. Ray, D.: Sojourn times of diffusion processes. Ill. J. Math. 7, 615–630 (1963)

    MathSciNet  MATH  Google Scholar 

  34. Rosen, J.: A random walk proof of the Erdős–Taylor conjecture. Periodi. Math. Hungarica 50, 223–245 (2005)

    Article  Google Scholar 

  35. Rodriguez, P.-F.: Level set percolation for random interlacements and the Gaussian free field. Stoch. Process. Appl. 124(4), 1469–1502 (2014)

    Article  MathSciNet  Google Scholar 

  36. Rodriguez, P.-F.: On pinned fields, interlacements, and random walk on \((\mathbb{Z}/N\mathbb{Z})^2\). Probab. Theory Rel. Fields. 173, 1265–1299 (2019)

    Article  Google Scholar 

  37. Sabot, C., Tarres, P.: Inverting Ray–Knight identity. Probab. Theory Relat. Fields 165(3–4), 559–580 (2016)

    Article  MathSciNet  Google Scholar 

  38. Shamov, A.: On Gaussian multiplicative chaos. J. Funct. Anal. 270(9), 3224–3261 (2016)

    Article  MathSciNet  Google Scholar 

  39. Symanzik, K.: Euclidean quantum field theory. In: Scuola internazionale di Fisica “Enrico Fermi”, XLV Corso, pp. 152–223. Academic Press (1969)

  40. Sznitman, A.-S.: Random interlacements and the Gaussian free field. Ann. Probab. 40(6), 2400–2438 (2012)

    Article  MathSciNet  Google Scholar 

  41. Teixeira, A.: Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14, 1604–1627 (2009)

    Article  MathSciNet  Google Scholar 

  42. Zhai, A.: Exponential concentration of cover times. Electron. J. Probab. 23(32), 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author has been supported in part by JSPS KAKENHI, Grant-in-Aid for Early-Career Scientists 18K13429. The second author has been partially supported by the NSF award DMS-1712632. We wish to thank an anonymous referee for a number of important corrections to the initial version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Biskup.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

\(\copyright \) 2022 Y. Abe and M. Biskup. Reproduction, by any means, of the entire article for non-commercial purposes is permitted without charge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, Y., Biskup, M. Exceptional points of two-dimensional random walks at multiples of the cover time. Probab. Theory Relat. Fields 183, 1–55 (2022). https://doi.org/10.1007/s00440-022-01113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-022-01113-4

Mathematics Subject Classification

Navigation