Log in

Megakaryoblastic leukemia factor-1 gene in the susceptibility to coronary artery disease

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Coronary artery disease (CAD) is based on the atherosclerosis of coronary artery and may manifest with myocardial infarction or angina pectoris. Although it is widely accepted that genetic factors are linked to CAD and several disease-related genes have been reported, only a few could be replicated suggesting that there might be some other CAD-related genes. To identify novel susceptibility loci for CAD, we used microsatellite markers in the screening and found six different candidate CAD loci. Subsequent single nucleotide polymorphism (SNP) association studies revealed an association between CAD and megakaryoblastic leukemia factor-1 gene (MKL1). The association with a promoter SNP of MKL1, −184C > T, was found in a Japanese population and the association was replicated in another Japanese population and a Korean population. Functional analysis of the MKL1 promoter SNP suggested that the higher MKL1 expression was associated with CAD. These findings suggest that MKL1 is involved in the pathogenesis of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  • Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99

    Article  PubMed  CAS  Google Scholar 

  • Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93:74–82

    Article  PubMed  CAS  Google Scholar 

  • Chen SN, Ballantyne CM, Gotto AM Jr, Tan Y, Willerson JT et al (2005) A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J Am Coll Cardiol 45:1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Ciruzzi M, Schargrodsky H, Rozlosnik J, Pramparo P, Delmonte H et al (1997) Frequency of family history of acute myocardial infarction in patients with acute myocardial infarction. Am J Cardiol 80:122–127

    Article  PubMed  CAS  Google Scholar 

  • Collins HE, Li H, Inda SE, Anderson J, Laiho K et al (2000) A simple and accurate method for determination of microsatellite total allele content differences between DNA pools. Hum Genet 106:218–226

    Article  PubMed  CAS  Google Scholar 

  • Coronary Artery Disease Consortium (2009) Large scale association analysis of novel genetic loci for coronary artery disease. Arterioscler Thromb Vasc Biol 29:774–780

    Article  CAS  Google Scholar 

  • Du KL, Chen M, Li J, Lepore JJ, Mericko P et al (2004) Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells. J Biol Chem 279:17578–17586

    Article  PubMed  CAS  Google Scholar 

  • Ebana Y, Ozaki K, Inoue K, Sato H, Iida A et al (2007) A functional SNP in ITIH3 is associated with susceptibility to myocardial infarction. J Hum Genet 52:220–229

    Article  PubMed  CAS  Google Scholar 

  • Elberg G, Chen L, Elberg D, Chan MD, Logan CJ et al (2008) MKL1 mediates TGF-beta1-induced alpha-smooth muscle actin expression in human renal epithelial cells. Am J Physiol Renal Physiol 294:F1116–F1128

    Article  PubMed  CAS  Google Scholar 

  • Erdmann J, Grosshennig A, Braund PS, König IR, Hengstenberg C et al (2009) New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet 41:280–282

    Article  PubMed  CAS  Google Scholar 

  • Evans D, Beil FU (2006) The E670G SNP in the PCSK9 gene is associated with polygenic hypercholesterolemia in men but not in women. BMC Med Genet 7:66

    Article  PubMed  CAS  Google Scholar 

  • Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493

    Article  PubMed  CAS  Google Scholar 

  • Hinohara K, Nakajima T, Takahashi M, Hohda S, Sasaoka T et al (2008) Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations. J Hum Genet 53:357–359

    Article  PubMed  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    Article  PubMed  CAS  Google Scholar 

  • Hohda S, Kimura A, Sasaoka T, Hayashi T, Ueda K et al (2003) Association study of CD14 polymorphism with myocardial infarction in a Japanese population. Jpn Heart J 44:613–622

    Article  PubMed  CAS  Google Scholar 

  • Kawashima M, Tamiya G, Oka A, Hohjoh H, Juji T et al (2006) Genomewide association analysis of human narcolepsy and a new resistance gene. Am J Hum Genet 79:252–263

    Article  PubMed  CAS  Google Scholar 

  • Lopez AD, Mathers CD, Ezzati M, Jamiso DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757

    Article  PubMed  Google Scholar 

  • Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  • McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316:1488–1491

    Article  PubMed  CAS  Google Scholar 

  • Morgan TM, Krumholz HM, Lifton RP, Spertus JA (2007) Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. JAMA 297:1551–1561

    Article  PubMed  CAS  Google Scholar 

  • Myocardial Infarction Genetics Consortium (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–341

    Article  CAS  Google Scholar 

  • Ohashi J, Tokunaga K (2003) Power of genomewide linkage disequilibrium testing by using microsatellite markers. J Hum Genet 48:487–491

    Article  PubMed  CAS  Google Scholar 

  • Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R et al (2002) Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 32:650–654

    Article  PubMed  CAS  Google Scholar 

  • Ozaki K, Sato H, Inoue K, Tsunoda T, Sakata Y et al (2009) SNPs in BRAP associated with risk of myocardial infarction in Asian populations. Nat Genet 41:329–333

    Article  PubMed  CAS  Google Scholar 

  • Parmacek MS (2007) Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circ Res 100:633–644

    Article  PubMed  CAS  Google Scholar 

  • Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  • Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M et al (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357:443–453

    Article  PubMed  CAS  Google Scholar 

  • Sata M, Saiura A, Kunisato A, Tojo A, Okada S et al (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409

    Article  PubMed  CAS  Google Scholar 

  • Shibata H, Yasunami M, Obuchi N, Takahashi M, Kobayashi Y et al (2006) Direct determination of single nucleotide polymorphism haplotype of NFKBIL1 promoter polymorphism by DNA conformation analysis and its application to association study of chronic inflammatory diseases. Hum Immunol 67:363–373

    Article  PubMed  CAS  Google Scholar 

  • Shiffman D, Ellis SG, Rowland CM, Malloy MJ, Luke MM et al (2005) Identification of four gene variants associated with myocardial infarction. Am J Hum Genet 77:596–605

    Article  PubMed  CAS  Google Scholar 

  • Tamiya G, Shinya M, Imanishi T, Ikuta T, Makino S et al (2005) Whole genome association study of rheumatoid arthritis using 27 039 microsatellites. Hum Mol Genet 14:2305–2321

    Article  PubMed  CAS  Google Scholar 

  • Trégouët DA, König IR, Erdmann J, Munteanu A, Braund PS, Hall AS et al (2009) Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet 41:283–285

    Article  PubMed  CAS  Google Scholar 

  • Wang Q (2005) Molecular genetics of coronary artery disease. Curr Opin Cardiol 20:182–188

    Article  PubMed  Google Scholar 

  • Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  CAS  Google Scholar 

  • Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40:161–169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful Dr. Gen Tamiya for his help in the MS analysis and Dr. Akihiko Hamamatsu for the preparation of coronary artery sections. This work was supported in part by Grant-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, a research grant from the Ministry of Health, Labour and Welfare, Japan, research grants for Japan-Korea collaboration research from Japan Society for the Promotion of Science and by a KOSEF grant, the Korea-Japan Basic Scientific Cooperation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Kimura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary textS1 (DOC 32 kb)

Supplementary TableS1 (DOC 21 kb)

Supplementary TableS2 (DOC 28 kb)

Supplementary TableS3 (DOC 28 kb)

Supplementary TableS4 (DOC 23 kb)

Supplementary TableS5 (DOC 27 kb)

439_2009_698_MOESM7_ESM.ppt

Supplementary Figure S1 Results of the genome-wide screening: P values by Fisher’s exact test based on 2 × 2 contingency tables (green line) or on 2 × m contingency tables (blue line) for the first screening as well as 2 × 2 contingency tables (pink line) or on 2 × m contingency tables (purple line) for the second screening are shown. Yellow circles indicate 42 MS that showed significant associations in both the first and second screenings and tested in the following confirmation analysis by individual ty**. Red arrows indicate 6 MS that showed significant associations in the third screening

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinohara, K., Nakajima, T., Yasunami, M. et al. Megakaryoblastic leukemia factor-1 gene in the susceptibility to coronary artery disease. Hum Genet 126, 539–547 (2009). https://doi.org/10.1007/s00439-009-0698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0698-6

Keywords

Navigation