Log in

Inter-brain neural mechanism and influencing factors underlying different cooperative behaviors: a hyperscanning study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Cooperative behavior is a vital social interaction which plays a vital role in improving human survival and reproduction. However, few empirical studies have examined the differences between cooperative behaviors and the underlying neural substrates. In the present study, the brain activity of familiar dyads of the same sex was measured using functional near-infrared spectroscopy during three cooperative tasks (cooperative button-press, tangram, and Jenga tasks). We also measured the dyads’ empathic abilities and personality traits to investigate the relationships between individual characteristics and neural markers. The results showed that first, there were significant differences in intra-brain activation and inter-brain synchronization among different cooperative tasks in three dimensions: social cognition, behavioral response, and cognitive processing. Second, male participants require stronger intra-brain activation to achieve the same inter-brain synchronization level as women in cooperative tasks. Third, when performing cooperative tasks involving high cognitive demands, Big Five Neuroticism may be an important predictor of neural activation in female participants. Inter-brain synchronization plays an important role in the frontal and temporoparietal junctions during interpersonal cooperation. Furthermore, this study demonstrates that mutual prediction theory is crucial for understanding the neural mechanisms of cooperative behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  • Baker JM, Liu N, Cui X, Vrticka P, Saggar M, Hosseini SM, Reiss AL (2016) Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Sci Rep 6:26492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balconi M, Vanutelli ME (2017) Interbrains cooperation: hyperscanning and self-perception in joint actions. J Clin Exp Neuropsychol 39(6):607–620

    Article  PubMed  Google Scholar 

  • Balconi M, Vitaloni S (2012) The tDCS effect on alpha brain oscillation for correct vs. incorrect object use. The contribution of the left DLPFC. Neurosci Lett 517(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Balconi M, Crivelli D, Vanutelli ME (2017) Why to cooperate is better than to compete: brain and personality components. BMC Neurosci 18(1):1–15

    Article  Google Scholar 

  • Baron-Cohen S, Knickmeyer RC, Belmonte MK (2005) Sex differences in the brain: implications for explaining autism. Science 310(5749):819–823

    Article  CAS  PubMed  Google Scholar 

  • Burgess AP (2013) On the interpretation of synchronization in EEG hyperscanning studies: a cautionary note. Front Hum Neurosci 7:881

    Article  PubMed  PubMed Central  Google Scholar 

  • Canli T, Amin Z (2002) Neuroimaging of emotion and personality: scientific evidence and ethical considerations. Brain Cogn 50:414–431

    Article  PubMed  Google Scholar 

  • Cheng X, Li X, Hu Y (2015) Synchronous brain activity during cooperative exchange depends on gender of partner: a fNIRS-based hyperscanning study. Hum Brain Mapp 36(6):2039–2048

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Guo B, Hu Y (2022) Distinct neural couplings to shared goal and action coordination in joint action: evidence based on fNIRS hyperscanning. Soc Cogn Affect Neurosci 17(10):956–964

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark R (2015) Neuroticism and its associations with higher cognitive functions. Diss. University of Minnesota

  • Cooper RJ, Selb J, Gagnon L, Phillip D, Schytz HW, Iversen HK, Boas DA (2012) A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front Neurosci 6:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui X, Bryant DM, Reiss AL (2012) NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage 59(3):2430–2437

    Article  PubMed  Google Scholar 

  • Czeszumski A, Liang SH, Dikker S, König P, Lee CP, Koole SL, Kelsen B (2022) Cooperative behavior evokes interbrain synchrony in the prefrontal and temporoparietal cortex: a systematic review and meta-analysis of fNIRS hyperscanning studies. eNeuro. https://doi.org/10.1523/ENEURO.0268-21.2022

    Article  PubMed  PubMed Central  Google Scholar 

  • de C Hamilton AF (2021) Hyperscanning: beyond the hype. Neuron 109(3):404–407

    Article  Google Scholar 

  • Duan H, Yang T, Wang X, Kan Y, Hu W (2020) Is the creativity of lovers better? A behavioral and functional near-infrared spectroscopy hyperscanning study. Curr Psychol 41:41–54

    Article  Google Scholar 

  • Edwards A, Wyatt J, Richardson C, Delpy D, Cope M, Reynolds E (1988) Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet (london, England) 2(8614):770–771

    Article  CAS  PubMed  Google Scholar 

  • Farrow TF, Zheng Y, Wilkinson ID, Spence SA, Deakin JF, Tarrier N et al (2001) Investigating the functional anatomy of empathy and forgiveness. NeuroReport 12(11):2433–2438

    Article  CAS  PubMed  Google Scholar 

  • Fessler DM, Holbrook C (2014) Marching into battle: synchronized walking diminishes the conceptualized formidability of an antagonist in men. Biol Lett 10(8):20140592

    Article  PubMed  PubMed Central  Google Scholar 

  • Fincham JM, Carter CS, van Veen V, Stenger VA, Anderson JR (2002) Neural mechanisms of planning: a computational analysis using event-related fMRI. Proc Natl Acad Sci USA 99(5):3346–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishburn FA, Murty VP, Hlutkowsky CO, MacGillivray CE, Bemis LM, Murphy ME et al (2018) Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality. Soc Cogn Affect Neurosci 13(8):841–849

    Article  PubMed  PubMed Central  Google Scholar 

  • Fronda G, Balconi M (2020) The effect of interbrain synchronization in gesture observation: a fNIRS study. Brain Behav 10(7):e01663

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallagher HL, Jack AI, Roepstorff A, Frith CD (2002) Imaging the intentional stance in a competitive game. Neuroimage 16(3):814–821

    Article  PubMed  Google Scholar 

  • Geyer S, Grefkes C, Schormann T, Mohlberg H, Zilles K (2001) The microstructural border between the agranular frontal (Brodmann’s area 6) and the granular prefrontal cortex - a population map in standard anatomical format. Neuroimage 13(6):S1171

    Article  Google Scholar 

  • Goel V, Grafman J, Sadato N, Hallett M (1995) Modeling other minds. NeuroReport 6(13):1741–1746

    Article  CAS  PubMed  Google Scholar 

  • Goldstein P, Weissman-Fogel I, Dumas G, Shamay-Tsoory SG (2018) Brain-to-brain coupling during handholding is associated with pain reduction. Proc Natl Acad Sci USA 115(11):E2528–E2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granger CW (1969) Investigating causal relations by econometric models and cross-spectral methods. Econom j Econom Society. 37(3):424–438

    Google Scholar 

  • Gvirts Provolovski HZ, Perlmutter R (2021) How can we prove the causality of interbrain synchronization? Front Hum Neurosci 15:651949

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasson U, Malach R, Heeger DJ (2010) Reliability of cortical activity during natural stimulation. Trends Cogn Sci 14(1):40–48

    Article  PubMed  Google Scholar 

  • Hasson U, Ghazanfar AA, Galantucci B, Garrod S, Keysers C (2012) Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn Sci 16(2):114–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Henrich J, Henrich N (2006) Culture, evolution and the puzzle of human cooperation. Cogn Syst Res 7(2–3):220–245

    Article  Google Scholar 

  • Holroyd CB (2022) Interbrain synchrony: on wavy ground. Trends Neurosci 45(5):346–357

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Hu Y, Li X, Pan Y, Cheng X (2017) Brain-to-brain synchronization across two persons predicts mutual prosociality. Soc Cogn Affect Neurosci 12(12):1835–1844

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Wang Z, Song B, Pan Y, Cheng X, Zhu Y, Hu Y (2021) How to calculate and validate inter-brain synchronization in a fNIRS hyperscanning study. J vis Exp 175:1–16

    Google Scholar 

  • Iacoboni M, Lieberman MD, Knowlton BJ, Molnar-Szakacs I, Moritz M, Throop CJ, Fiske AP (2004) Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage 21(3):1167–1173

    Article  PubMed  Google Scholar 

  • Ingalhalikar M, Smith A, Parker D, Satterthwaite TD, Elliott MA, Ruparel K, Verma R (2014) Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci 111(2):823–828

    Article  CAS  PubMed  Google Scholar 

  • Jou RJ, Minshew NJ, Keshavan MS, Vitale MP, Hardan AY (2010) Enlarged right superior temporal gyrus in children and adolescents with autism. Brain Res 1360:205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneshiro B, Nguyen DT, Norcia AM, Dmochowski JP, Berger J (2020) Natural music evokes correlated EEG responses reflecting temporal structure and beat. Neuroimage 214:116559

    Article  PubMed  Google Scholar 

  • Keller PE, Novembre G, Hove MJ (2014) Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination. Philos Trans R Soc Lond B Biol Sci 369(1658):20130394

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingsbury L, Hong W (2020) A multi-brain framework for social interaction. Trends Neurosci 43(9):651–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschner S, Tomasello M (2010) Joint music making promotes prosocial behavior in 4-year-old children. Evol Hum Behav 31(5):354–364

    Article  Google Scholar 

  • Lee TMC, Chan CCH, Leung AWS, Fox PT, Gao J (2009) Sex-related differences in neural activity during risk taking: An fMRI Study. Cerebral Cortex (new York, NY) 19:1303–1312

    Google Scholar 

  • Li L, Wang H, Luo H, Zhang X, Zhang R, Li X (2020) Interpersonal neural synchronization during cooperative behavior of basketball players: a fNIRS-based hyperscanning study. Front Hum Neurosci 14:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chen R, Turel O, Feng T, Zhu CZ, He Q (2021) Dyad sex composition effect on IBS in face-to-face cooperation. Brain Imaging Behav 15(3):1667–1675

    Article  PubMed  Google Scholar 

  • Li L, Huang X, **ao J, Zheng Q, Shan X, He C et al (2022) Neural synchronization predicts marital satisfaction. Proc Natl Acad Sci U S A 119(34):e2202515119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Pelowski M (2014) Clarifying the interaction types in two-person neuroscience research. Front Hum Neurosci 8:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu N, Mok C, Witt EE, Pradhan AH, Chen JE, Reiss AL (2016) NIRS-based hyperscanning reveals inter-brain neural synchronization during cooperative Jenga game with face-to-face communication. Front Hum Neurosci 10:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Long Y, Zheng L, Zhao H, Zhou S, Zhai Y, Lu C (2021) Interpersonal neural synchronization during interpersonal touch underlies affiliative pair bonding between romantic couples. Cereb Cortex 31(3):1647–1659

    Article  PubMed  Google Scholar 

  • Lu K, Hao N (2019) When do we fall in neural synchrony with others? Soc Cogn Affect Neurosci 14(3):253–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu K, Qiao X, Hao N (2019a) Praising or kee** silent on partner’s ideas: leading brainstorming in particular ways. Neuropsychologia 124:19–30

    Article  PubMed  Google Scholar 

  • Lu K, Xue H, Nozawa T, Hao N (2019b) Cooperation makes a group be more creative. Cere Cortex 29(8):3457–3470

    Article  Google Scholar 

  • Marco L, Vincenzo P, Cristina L (2013) Auditory and visual systems organization in Brodmann Area 8 for gaze-shift control: where we do not see, we can hear. Front Behav Neurosci 7:198

    Google Scholar 

  • Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods 164(1):177–190

    Article  PubMed  Google Scholar 

  • Mazzurega M, Pavani F, Paladino MP, Schubert TW (2011) Self-other bodily merging in the context of synchronous but arbitrary-related multisensory inputs. Exp Brain Res 213(2–3):213–221

    Article  PubMed  Google Scholar 

  • Molenberghs P, Brander C, Mattingley JB, Cunnington R (2010) The role of the superior temporal sulcus and the mirror neuron system in imitation. Hum Brain Mapp 31(9):1316–1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Moll J, Zahn R, de Oliveira-Souza R, Bramati IE, Krueger F, Tura B et al (2011) Impairment of prosocial sentiments is associated with frontopolar and septal damage in frontotemporal dementia. Neuroimage 54(2):1735–1742

    Article  PubMed  Google Scholar 

  • Monsell S (2003) Task switching. Trends Cogn Sci 7(3):134–140

    Article  PubMed  Google Scholar 

  • Nessler JA, Gilliland SJ (2009) Interpersonal synchronization during side by side treadmill walking is influenced by leg length differential and altered sensory feedback. Hum Mov Sci 28(6):772–785

    Article  PubMed  Google Scholar 

  • Oberman LM, Ramachandran VS (2007) The simulating social mind: the role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychol Bull 133(2):310–327

    Article  PubMed  Google Scholar 

  • Osaka N, Minamoto T, Yaoi K, Azuma M, Shimada YM, Osaka M (2015) How two brains make one synchronized mind in the inferior frontal cortex: fNIRS-based hyperscanning during cooperative singing. Front Psychol 6:1811

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Cheng X, Zhang Z, Li X, Hu Y (2017) Cooperation in lovers: an fNIRS-based hyperscanning study. Hum Brain Mapp 38(2):831–841

    Article  PubMed  Google Scholar 

  • Paulus MP, Rogalsky C, Simmons A, Feinstein JS, Stein MB (2003) Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage 19(4):1439–1448

    Article  PubMed  Google Scholar 

  • Rabinowitch TC, Knafo-Noam A (2015) Synchronous rhythmic interaction enhances children’s perceived similarity and closeness towards each other. PLoS One 10(4):e0120878

    Article  PubMed  PubMed Central  Google Scholar 

  • Rickard TC, Romero SG, Basso G, Wharton C, Grafman J (2000) The calculating brain: an fMRI study. Neuropsychologia 38(3):325–335

    Article  CAS  PubMed  Google Scholar 

  • Rilling JK, Sanfey AG, Aronson JA, Nystrom LE, Cohen JD (2004) The neural correlates of theory of mind within interpersonal interactions. Neuroimage 22(4):1694–1703

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Fabbri-Destro M (2008) The mirror system and its role in social cognition. Curr Opin Neurobiol 18(2):179–184

    Article  CAS  PubMed  Google Scholar 

  • Roca M, Torralva T, Gleichgerrcht E, Woolgar A, Thompson R, Duncan J, Manes F (2011) The role of area 10 (BA10) in human multitasking and in social cognition: a lesion study. Neuropsychologia 49(13):3525–3531

    Article  PubMed  Google Scholar 

  • Scholkmann F, Spichtig S, Muehlemann T, Wolf M (2010) How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol Meas 31(5):649–662

    Article  CAS  PubMed  Google Scholar 

  • Schurz M, Radua J, Aichhorn M, Richlan F, Perner J (2014) Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev 42:9–34

    Article  PubMed  Google Scholar 

  • Sciaraffa N, Borghini G, Arico P, Di Flumeri G, Toppi J, Colosimo A et al (2017) How the workload impacts on cognitive cooperation: a pilot study. 2017 39th Annu. Int Conf IEEE Eng Med Biol so (EMBC) 2017:3961–3964

    PubMed  Google Scholar 

  • Sun B, **ao W, Feng X, Shao Y, Zhang W, Li W (2020) Behavioral and brain synchronization differences between expert and novice teachers when collaborating with students. Brain Cogn 139:105513

    Article  PubMed  Google Scholar 

  • Szymanski C, Pesquita A, Brennan AA, Perdikis D, Enns JT, Brick TR et al (2017) Teams on the same wavelength perform better: Inter-brain phase synchronization constitutes a neural substrate for social facilitation. Neuroimage 152:425–436

    Article  PubMed  Google Scholar 

  • Takashi H, Manabu H, Nobukatsu S, Tomohisa O, Yoshiharu Y, Hidena F, Hiroshi S (2002) The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach. Cereb Cortex 12(11):1157–1170

    Article  Google Scholar 

  • Tanaka S, Honda M, Sadato N (2005) Modality-specific cognitive function of medial and lateral human Brodmann area 6. J Neurosci 25(2):496–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasi D, Volkow ND (2019) Association between brain activation and functional connectivity. Cereb Cortex 29(5):1984–1996

    Article  PubMed  Google Scholar 

  • Van Overwalle F, Baetens K (2009) Understanding other’s actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48(3):564–584

    Article  PubMed  Google Scholar 

  • Volz KG, Schubotz RI, von Cramon DY (2005) Variants of uncertainty in decision-making and their neural correlates. Brain Res Bull 67(5):403–412

    Article  PubMed  Google Scholar 

  • Wang C, Zhang T, Shan Z, Liu J, Yuan D, Li X (2019) Dynamic interpersonal neural synchronization underlying pain-induced cooperation in females. Hum Brain Mapp 40(11):3222–3232

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Liu J, Zhang T, Su W, Tang X, Tang Y et al (2023) Reduced interpersonal neural synchronization in right inferior frontal gyrus during social interaction in participants with clinical high risk of psychosis: An fNIRS-based hyperscanning study. Prog Neuropsychopharmacol Biol Psychiatry 120:110634

    Article  CAS  PubMed  Google Scholar 

  • Wheelwright S, Baron-Cohen S, Goldenfeld N, Delaney J, Fine D, Smith R et al (2006) Predicting autism spectrum quotient (AQ) from the systemizing quotient-revised (SQ-R) and empathy quotient (EQ). Brain Res 1079(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • **a M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One 8(7):e68910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue H, Lu K, Hao N (2018) Cooperation makes two less-creative individuals turn into a highly-creative pair. Neuroimage 172:527–537

    Article  PubMed  Google Scholar 

  • Yennu A, Tian F, Smith-Osborne A, J Gatchel R, Woon FL, Liu H (2016) Prefrontal responses to Stroop tasks in subjects with post-traumatic stress disorder assessed by functional near infrared spectroscopy. Sci Rep 6(1):30157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan D, Zhang R, Liu J, Feng D, Hu Y, Li X et al (2022) Interpersonal neural synchronization could predict the outcome of mate choice. Neuropsychologia 165:108112

    Article  PubMed  Google Scholar 

  • Zhang LY (2006) Relationships among cognitive performance, cognitive styles and neuroticism. Chin J Clin Psychol 14(2):218–214

    Google Scholar 

  • Zhang M, Liu T, Pelowski M, Yu D (2017a) Gender difference in spontaneous deception: a hyperscanning study using functional near-infrared spectroscopy. Sci Rep 7(1):7508

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Liu T, Pelowski M, Jia H, Yu D (2017b) Social risky decision-making reveals gender differences in the TPJ: a hyperscanning study using functional near-infrared spectroscopy. Brain Cogn 119:54–63

    Article  PubMed  Google Scholar 

  • Zhang X, Wang MC, He L, Jie L, Deng J (2019) The development and psychometric evaluation of the Chinese big five personality inventory-15. PLoS One 14(8):e0221621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Long Y, Lu C (2021) Measurement of the directional information flow in fNIRS-Hyperscanning data using the partial wavelet transform coherence method. JoVE 175:e62927

    Google Scholar 

  • Zhu Y, Leong V, Hou Y, Zhang D, Pan Y, Hu Y (2021) Instructor–learner neural synchronization during elaborated feedback predicts learning transfer. J Educ Psych 114(6):1427–1441

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the relevant departments for their support.

Funding

This research was supported by the Key Support Project for the Emerging Cross-Discipline of the Philosophical Social Science Foundation of Zhejiang Province (21XXJC05ZD), the Humanities and Social Sciences Projects of Ministry of Education (21YJC880094), the Natural Science Foundation Youth Project of Science and Technology Department of **njiang Uygur Autonomous Region (2022D01B06), and the Research Project of Shaoxing University (2022SK010).

Author information

Authors and Affiliations

Authors

Contributions

MZ, WC, and QL: designed research, HC, BH, YH, HS, XR, and YJ: performed research, MZ: analyzed data, QL and MZ: wrote the paper.

Corresponding authors

Correspondence to Mingming Zhang or Wei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Cui, H., Huang, B. et al. Inter-brain neural mechanism and influencing factors underlying different cooperative behaviors: a hyperscanning study. Brain Struct Funct 229, 75–95 (2024). https://doi.org/10.1007/s00429-023-02700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-023-02700-4

Keywords

Navigation