Log in

An extensive immunohistochemical analysis of 290 ovarian adult granulosa cell tumors with 29 markers

  • ORIGINAL ARTICLE
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The current knowledge about the immunohistochemical features of adult granulosa cell tumor (AGCT) is mostly limited to the “traditional” immunohistochemical markers of sex cord differentiation, such as inhibin, calretinin, FOXL2, SF1, and CD99. Knowledge about the immunohistochemical markers possibly used for predictive purpose is limited. In our study, we focused on the immunohistochemical examination of 290 cases of AGCT classified based on strict diagnostic criteria, including molecular testing. The antibodies used included 12 of the “diagnostic” antibodies already examined in previous studies, 10 antibodies whose expression has not yet been examined in AGCT, and 7 antibodies with possible predictive significance, including the expression of HER2, PD-L1, CTLA4, and 4 mismatch repair (MMR) proteins. The results of our study showed expression of FOXL2, SF1, CD99, inhibin A, calretinin, ER, PR, AR, CKAE1/3, and CAIX in 98%, 100%, 90%, 78%, 45%, 41%, 94%, 82%, 26%, and 9% of AGCT, respectively. GATA3, SATB2, napsin A, MUC4, TTF1, and CD44 were all negative. PTEN showed a loss of expression in 71% of cases and DPC4 in 4% of cases. The aberrant staining pattern (overexpression) of p53 was found in 1% (3/268) of cases, 2 primary tumors, and 1 recurrent case. Concerning the predictive markers, the results of our study showed that AGCT is microsatellite stable, do not express PD-L1, and are HER2 negative. The CTLA4 expression was found in almost 70% of AGCT tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analyzed during this study is included in this published article (and its Supplementary information files).

References

  1. Fashedemi Y, Coutts M, Wise O, Bonhomme B, Baker G, Kelly PJ, Soubeyran I, Catherwood MA, Croce S, McCluggage WG (2019) Adult granulosa cell tumor with high-grade transformation: report of a series with FOXL2 mutation analysis. Am J Surg Pathol 43:1229–1238. https://doi.org/10.1097/PAS.0000000000001296

    Article  PubMed  Google Scholar 

  2. Sakr S, Abdulfatah E, Thomas S, Al-Wahab Z, Beydoun R, Morris R, Ali-Fehmi R, Bandyopadhyay S (2017) Granulosa cell tumors: novel predictors of recurrence in early-stage patients. Int J Gynecol Pathol 36:240–252. https://doi.org/10.1097/PGP.0000000000000325

    Article  PubMed  PubMed Central  Google Scholar 

  3. Balan RA, Caruntu ID, Giusca SE, Lozneanu L, Pavaleanu I, Socolov RV, Miron L, Marinca MV, Amalinei C (2017) Immunohistochemical significance of ER alpha, inhibin A, calretinin, and Ki67 expression in granulosa cell ovarian tumors. Rom J Morphol Embryol 58:753–760

    PubMed  Google Scholar 

  4. Alexiadis M, Rowley SM, Chu S, Leung DTH, Stewart CJR, Amarasinghe KC, Campbell IG, Fuller PJ (2019) Mutational landscape of ovarian adult granulosa cell tumors from whole exome and targeted TERT promoter sequencing. Mol Cancer Res 17:177–185. https://doi.org/10.1158/1541-7786.MCR-18-0359

    Article  CAS  PubMed  Google Scholar 

  5. McConechy MK, Farkkila A, Horlings HM, Talhouk A, Unkila-Kallio L, van Meurs HS, Yang W, Rozenberg N, Andersson N, Zaby K, Bryk S, Butzow R, Halfwerk JB, Hooijer GK, van de Vijver MJ, Buist MR, Kenter GG, Brucker SY, Kramer B, Staebler A, Bleeker MC, Heikinheimo M, Kommoss S, Blake Gilks C, Anttonen M, Huntsman DG (2016) Molecularly defined adult granulosa cell tumor of the ovary: the clinical phenotype. J Natl Cancer Inst 108. https://doi.org/10.1093/jnci/djw134

  6. Shah SP, Kobel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger SE, Sun M, Giuliany R, Yorida E, Jones S, Varhol R, Swenerton KD, Miller D, Clement PB, Crane C, Madore J, Provencher D, Leung P, DeFazio A, Khattra J, Turashvili G, Zhao Y, Zeng T, Glover JN, Vanderhyden B, Zhao C, Parkinson CA, Jimenez-Linan M, Bowtell DD, Mes-Masson AM, Brenton JD, Aparicio SA, Boyd N, Hirst M, Gilks CB, Marra M, Huntsman DG (2009) Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 360:2719–2729. https://doi.org/10.1056/NEJMoa0902542

    Article  CAS  PubMed  Google Scholar 

  7. Karnezis AN, Wang Y, Keul J, Tessier-Cloutier B, Magrill J, Kommoss S, Senz J, Yang W, Proctor L, Schmidt D, Clement PB, Gilks CB, Huntsman DG, Kommoss F (2019) DICER1 and FOXL2 mutation status correlates with clinicopathologic features in ovarian Sertoli-Leydig cell tumors. Am J Surg Pathol 43:628–638. https://doi.org/10.1097/PAS.0000000000001232

    Article  PubMed  Google Scholar 

  8. McCluggage WG, Soslow RA, Gilks CB (2011) Patterns of p53 immunoreactivity in endometrial carcinomas: ‘all or nothing’ staining is of importance. Histopathology 59:786–788. https://doi.org/10.1111/j.1365-2559.2011.03907.x

    Article  PubMed  Google Scholar 

  9. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36:2105–2122. https://doi.org/10.1200/JCO.2018.77.8738

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Tian B, Liu M, Miao C, Wang D (2022) Adult-type granulosa cell tumor of the ovary Am. J Cancer Res 12:3495–3511

    CAS  Google Scholar 

  11. Puechl AM, Edwards J, Suri A, Nakayama J, Bean S, Gehrig P, Saks E, Duska L, Broadwater G, Ehrisman J, Horowitz N, Secord AA (2019) The association between progesterone receptor expression and survival in women with adult granulosa cell tumors. Gynecol Oncol 153:74–79. https://doi.org/10.1016/j.ygyno.2019.01.016

    Article  CAS  PubMed  Google Scholar 

  12. Krishnamurthy N, Nishizaki D, Lippman SM, Miyashita H, Nesline MK, Pabla S, Conroy JM, DePietro P, Kato S, Kurzrock R (2024) High CTLA-4 transcriptomic expression correlates with high expression of other checkpoints and with immunotherapy outcome. Ther Adv Med Oncol 16:17588359231220510. https://doi.org/10.1177/17588359231220510

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mills AM, Chinn Z, Rauh LA, Dusenbery AC, Whitehair RM, Saks E, Duska LR (2019) Emerging biomarkers in ovarian granulosa cell tumors. Int J Gynecol Cancer 29:560–565. https://doi.org/10.1136/ijgc-2018-000065

    Article  PubMed  Google Scholar 

  14. Kassardjian A, Shintaku PI, Moatamed NA (2018) Expression of immune checkpoint regulators, cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death-ligand 1 (PD-L1), in female breast carcinomas. PLoS One 13:e0195958. https://doi.org/10.1371/journal.pone.0195958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lan G, Li J, Wen Q, Lin L, Chen L, Chen L, Chen X (2018) Cytotoxic T lymphocyte associated antigen 4 expression predicts poor prognosis in luminal B HER2-negative breast cancer. Oncol Lett 15:5093–5097. https://doi.org/10.3892/ol.2018.7991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paulsen EE, Kilvaer TK, Rakaee M, Richardsen E, Hald SM, Andersen S, Busund LT, Bremnes RM, Donnem T (2017) CTLA-4 expression in the non-small cell lung cancer patient tumor microenvironment: diverging prognostic impact in primary tumors and lymph node metastases. Cancer Immunol Immunother 66:1449–1461. https://doi.org/10.1007/s00262-017-2039-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pistillo MP, Tazzari PL, Palmisano GL, Pierri I, Bolognesi A, Ferlito F, Capanni P, Polito L, Ratta M, Pileri S, Piccioli M, Basso G, Rissotto L, Conte R, Gobbi M, Stirpe F, Ferrara GB (2003) CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target molecule for apoptosis induction of leukemic cells. Blood 101:202–209. https://doi.org/10.1182/blood-2002-06-1668

    Article  CAS  PubMed  Google Scholar 

  18. Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Fala F, Fabbi M, Kato T, Lucarelli E, Donati D, Polito L, Bolognesi A, Ricci F, Salvi S, Gargaglione V, Mantero S, Alberghini M, Ferrara GB, Pistillo MP (2005) CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer 117:538–550. https://doi.org/10.1002/ijc.21155

    Article  CAS  PubMed  Google Scholar 

  19. Karpathiou G, Chauleur C, Mobarki M, Peoc’h M (2020) The immune checkpoints CTLA-4 and PD-L1 in carcinomas of the uterine cervix. Pathol Res Pract 216:152782. https://doi.org/10.1016/j.prp.2019.152782

  20. Salvi S, Fontana V, Boccardo S, Merlo DF, Margallo E, Laurent S, Morabito A, Rijavec E, Dal Bello MG, Mora M, Ratto GB, Grossi F, Truini M, Pistillo MP (2012) Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunol Immunother 61:1463–1472. https://doi.org/10.1007/s00262-012-1211-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang XF, Pan K, Weng DS, Chen CL, Wang QJ, Zhao JJ, Pan QZ, Liu Q, Jiang SS, Li YQ, Zhang HX, **a JC (2016) Cytotoxic T lymphocyte antigen-4 expression in esophageal carcinoma: implications for prognosis. Oncotarget 7:26670–26679. https://doi.org/10.18632/oncotarget.8476

    Article  PubMed  PubMed Central  Google Scholar 

  22. Higgins PA, Brady A, Dobbs SP, Salto-Tellez M, Maxwell P, McCluggage WG (2014) Epidermal growth factor receptor (EGFR), HER2 and insulin-like growth factor-1 receptor (IGF-1R) status in ovarian adult granulosa cell tumours. Histopathology 64:633–638. https://doi.org/10.1111/his.12322

    Article  PubMed  Google Scholar 

  23. Kusamura S, Derchain S, Alvarenga M, Gomes CP, Syrjanen KJ, Andrade LA (2003) Expression of p53, c-erbB-2, Ki-67, and CD34 in granulosa cell tumor of the ovary. Int J Gynecol Cancer 13:450–457. https://doi.org/10.1046/j.1525-1438.2003.13327.x

    Article  CAS  PubMed  Google Scholar 

  24. Leibl S, Bodo K, Gogg-Kammerer M, Hrzenjak A, Petru E, Winter R, Denk H, Moinfar F (2006) Ovarian granulosa cell tumors frequently express EGFR (Her-1), Her-3, and Her-4: an immunohistochemical study. Gynecol Oncol 101:18–23. https://doi.org/10.1016/j.ygyno.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  25. Menczer J, Schreiber L, Czernobilsky B, Berger E, Golan A, Levy T (2007) Is Her-2/neu expressed in nonepithelial ovarian malignancies? Am J Obstet Gynecol 196(79):e71-74. https://doi.org/10.1016/j.ajog.2006.07.050

    Article  CAS  Google Scholar 

  26. Farkkila A, Andersson N, Butzow R, Leminen A, Heikinheimo M, Anttonen M, Unkila-Kallio L (2014) HER2 and GATA4 are new prognostic factors for early-stage ovarian granulosa cell tumor-a long-term follow-up study. Cancer Med 3:526–536. https://doi.org/10.1002/cam4.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marcus L, Lemery SJ, Keegan P, Pazdur R (2019) FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 25:3753–3758. https://doi.org/10.1158/1078-0432.CCR-18-4070

    Article  CAS  PubMed  Google Scholar 

  28. Gupta P, Kapatia G, Gupta N, Ballari N, Rai B, Suri V, Rajwanshi A (2022) Mismatch repair deficiency in adult granulosa cell tumors: an immunohistochemistry-based preliminary study. Appl Immunohistochem Mol Morphol 30:540–548. https://doi.org/10.1097/PAI.0000000000001051

    Article  CAS  PubMed  Google Scholar 

  29. Lague MN, Paquet M, Fan HY, Kaartinen MJ, Chu S, Jamin SP, Behringer RR, Fuller PJ, Mitchell A, Dore M, Huneault LM, Richards JS, Boerboom D (2008) Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis 29:2062–2072. https://doi.org/10.1093/carcin/bgn186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Z, Ren YA, Pangas SA, Adams J, Zhou W, Castrillon DH, Wilhelm D, Richards JS (2015) FOXO1/3 and PTEN depletion in granulosa cells promotes ovarian granulosa cell tumor development Mol Endocrinol 29:1006–1024. https://doi.org/10.1210/me.2015-1103

  31. Bazzichetto C, Conciatori F, Pallocca M, Falcone I, Fanciulli M, Cognetti F, Milella M, Ciuffreda L (2019) PTEN as a prognostic/predictive biomarker in cancer: an unfulfilled promise? Cancers (Basel) 11. https://doi.org/10.3390/cancers11040435

  32. Luboff AJ, DeRemer DL (2024) Capivasertib: a novel AKT inhibitor approved for hormone-receptor-positive, HER-2-negative metastatic breast cancer. Ann Pharmacother 10600280241241531. https://doi.org/10.1177/10600280241241531

  33. Al-Agha OM, Huwait HF, Chow C, Yang W, Senz J, Kalloger SE, Huntsman DG, Young RH, Gilks CB (2011) FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol 35:484–494. https://doi.org/10.1097/PAS.0b013e31820a406c

    Article  PubMed  Google Scholar 

  34. Anttonen M, Unkila-Kallio L, Leminen A, Butzow R, Heikinheimo M (2005) High GATA-4 expression associates with aggressive behavior, whereas low anti-Mullerian hormone expression associates with growth potential of ovarian granulosa cell tumors. J Clin Endocrinol Metab 90:6529–6535. https://doi.org/10.1210/jc.2005-0921

    Article  CAS  PubMed  Google Scholar 

  35. Cao QJ, Jones JG, Li M (2001) Expression of calretinin in human ovary, testis, and ovarian sex cord-stromal tumors. Int J Gynecol Pathol 20:346–352. https://doi.org/10.1097/00004347-200110000-00006

    Article  CAS  PubMed  Google Scholar 

  36. Cathro HP, Stoler MH (2005) The utility of calretinin, inhibin, and WT1 immunohistochemical staining in the differential diagnosis of ovarian tumors. Hum Pathol 36:195–201. https://doi.org/10.1016/j.humpath.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  37. Deavers MT, Malpica A, Liu J, Broaddus R, Silva EG (2003) Ovarian sex cord-stromal tumors: an immunohistochemical study including a comparison of calretinin and inhibin. Mod Pathol 16:584–590. https://doi.org/10.1097/01.MP.0000073133.79591.A1

    Article  PubMed  Google Scholar 

  38. Gebhart JB, Roche PC, Keeney GL, Lesnick TG, Podratz KC (2000) Assessment of inhibin and p53 in granulosa cell tumors of the ovary. Gynecol Oncol 77:232–236. https://doi.org/10.1006/gyno.2000.5774

    Article  CAS  PubMed  Google Scholar 

  39. Kommoss S, Gilks CB, Penzel R, Herpel E, Mackenzie R, Huntsman D, Schirmacher P, Anglesio M, Schmidt D, Kommoss F (2014) A current perspective on the pathological assessment of FOXL2 in adult-type granulosa cell tumours of the ovary. Histopathology 64:380–388. https://doi.org/10.1111/his.12253

    Article  PubMed  Google Scholar 

  40. McCluggage WG, Maxwell P (2001) Immunohistochemical staining for calretinin is useful in the diagnosis of ovarian sex cord-stromal tumours. Histopathology 38:403–408. https://doi.org/10.1046/j.1365-2559.2001.01147.x

    Article  CAS  PubMed  Google Scholar 

  41. Movahedi-Lankarani S, Kurman RJ (2002) Calretinin, a more sensitive but less specific marker than alpha-inhibin for ovarian sex cord-stromal neoplasms: an immunohistochemical study of 215 cases. Am J Surg Pathol 26:1477–1483. https://doi.org/10.1097/00000478-200211000-00010

    Article  PubMed  Google Scholar 

  42. Weidemann S, Noori NA, Lennartz M, Reiswich V, Dum D, Menz A, Chirico V, Hube-Magg C, Fraune C, Bawahab AA, Bernreuther C, Simon R, Clauditz TS, Sauter G, Hinsch A, Kind S, Jacobsen F, Steurer S, Minner S, Burandt E, Marx AH, Krech T, Lebok P, Buscheck F, Hoflmayer D (2022) Inhibin alpha expression in human tumors: a tissue microarray study on 12,212 tumors. Biomedicines 10. https://doi.org/10.3390/biomedicines10102507

  43. Zhao C, Vinh TN, McManus K, Dabbs D, Barner R, Vang R (2009) Identification of the most sensitive and robust immunohistochemical markers in different categories of ovarian sex cord-stromal tumors. Am J Surg Pathol 33:354–366. https://doi.org/10.1097/PAS.0b013e318188373d

    Article  PubMed  Google Scholar 

  44. Nofech-Mozes S, Ismiil N, Dube V, Saad RS, Khalifa MA, Moshkin O, Ghorab Z (2012) Immunohistochemical characterization of primary and recurrent adult granulosa cell tumors. Int J Gynecol Pathol 31:80–90. https://doi.org/10.1097/PGP.0b013e318224e089

    Article  CAS  PubMed  Google Scholar 

  45. Rathore R, Arora D, Agarwal S, Sharma S (2017) Correlation of FOXL2 with inhibin and calretinin in the diagnosis of ovarian sex cord stromal tumors. Turk Patoloji Derg 33:121–128. https://doi.org/10.5146/tjpath.2016.01382

    Article  CAS  PubMed  Google Scholar 

  46. Bai S, Wei S, Ziober A, Yao Y, Bing Z (2013) SALL4 and SF-1 are sensitive and specific markers for distinguishing granulosa cell tumors from yolk sac tumors. Int J Surg Pathol 21:121–125. https://doi.org/10.1177/1066896912454567

    Article  CAS  PubMed  Google Scholar 

  47. D’Angelo E, Mozos A, Nakayama D, Espinosa I, Catasus L, Munoz J, Prat J (2011) Prognostic significance of FOXL2 mutation and mRNA expression in adult and juvenile granulosa cell tumors of the ovary. Mod Pathol 24:1360–1367. https://doi.org/10.1038/modpathol.2011.95

    Article  CAS  PubMed  Google Scholar 

  48. Onder S, Hurdogan O, Bayram A, Yilmaz I, Sozen H, Yavuz E (2021) The role of FOXL2, SOX9, and beta-catenin expression and DICER1 mutation in differentiating sex cord tumor with annular tubules from other sex cord tumors of the ovary. Virchows Arch 479:317–324. https://doi.org/10.1007/s00428-021-03052-2

    Article  CAS  PubMed  Google Scholar 

  49. Yanagida S, Anglesio MS, Nazeran TM, Lum A, Inoue M, Iida Y, Takano H, Nikaido T, Okamoto A, Huntsman DG (2017) Clinical and genetic analysis of recurrent adult-type granulosa cell tumor of the ovary: persistent preservation of heterozygous c.402C>G FOXL2 mutation. PLoS One 12:e0178989. https://doi.org/10.1371/journal.pone.0178989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rabban JT, Zaloudek CJ (2013) A practical approach to immunohistochemical diagnosis of ovarian germ cell tumours and sex cord-stromal tumours. Histopathology 62:71–88. https://doi.org/10.1111/his.12052

    Article  PubMed  Google Scholar 

  51. Costa MJ, DeRose PB, Roth LM, Brescia RJ, Zaloudek CJ, Cohen C (1994) Immunohistochemical phenotype of ovarian granulosa cell tumors: absence of epithelial membrane antigen has diagnostic value. Hum Pathol 25:60–66. https://doi.org/10.1016/0046-8177(94)90172-4

    Article  CAS  PubMed  Google Scholar 

  52. Otis CN, Powell JL, Barbuto D, Carcangiu ML (1992) Intermediate filamentous proteins in adult granulosa cell tumors. An immunohistochemical study of 25 cases. Am J Surg Pathol 16:962–968. https://doi.org/10.1097/00000478-199210000-00006

    Article  CAS  PubMed  Google Scholar 

  53. Staibano S, Franco R, Mezza E, Chieffi P, Sinisi A, Pasquali D, Errico ME, Nappi C, Tremolaterra F, Somma P, Mansueto G, De Rosa G (2003) Loss of oestrogen receptor beta, high PCNA and p53 expression and aneuploidy as markers of worse prognosis in ovarian granulosa cell tumours. Histopathology 43:254–262. https://doi.org/10.1046/j.1365-2559.2003.01706.x

    Article  CAS  PubMed  Google Scholar 

  54. Ciucci A, Ferrandina G, Mascilini F, Filippetti F, Scambia G, Zannoni GF, Gallo D (2018) Estrogen receptor beta: Potential target for therapy in adult granulosa cell tumors? Gynecol Oncol 150:158–165. https://doi.org/10.1016/j.ygyno.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  55. Farinola MA, Gown AM, Judson K, Ronnett BM, Barry TS, Movahedi-Lankarani S, Vang R (2007) Estrogen receptor alpha and progesterone receptor expression in ovarian adult granulosa cell tumors and Sertoli-Leydig cell tumors. Int J Gynecol Pathol 26:375–382. https://doi.org/10.1097/pgp.0b013e31805c0d99

    Article  PubMed  Google Scholar 

  56. Hutton SM, Webster LR, Nielsen S, Leung Y, Stewart CJ (2012) Immunohistochemical expression and prognostic significance of oestrogen receptor-alpha, oestrogen receptor-beta, and progesterone receptor in stage 1 adult-type granulosa cell tumour of the ovary. Pathology 44:611–616. https://doi.org/10.1097/PAT.0b013e328359d636

    Article  CAS  PubMed  Google Scholar 

  57. Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, McShane L, Paik S, Penault-Llorca F, Prudkin L, Regan M, Salter J, Sotiriou C, Smith IE, Viale G, Zujewski JA, Hayes DF, International Ki-67 in Breast Cancer Working G (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 103:1656–1664. https://doi.org/10.1093/jnci/djr393

  58. Leuverink EM, Brennan BA, Crook ML, Doherty DA, Hammond IG, Ruba S, Stewart CJ (2008) Prognostic value of mitotic counts and Ki-67 immunoreactivity in adult-type granulosa cell tumour of the ovary. J Clin Pathol 61:914–919. https://doi.org/10.1136/jcp.2008.056093

    Article  CAS  PubMed  Google Scholar 

  59. Horny HP, Marx L, Krober S, Luttges J, Kaiserling E, Dietl J (1999) Granulosa cell tumor of the ovary. Immunohistochemical evidence of low proliferative activity and virtual absence of mutation of the p53 tumor-suppressor gene. Gynecol Obstet Invest 47:133–138. https://doi.org/10.1159/000010077

    Article  CAS  PubMed  Google Scholar 

  60. Mayr D, Kaltz-Wittmer C, Arbogast S, Amann G, Aust DE, Diebold J (2002) Characteristic pattern of genetic aberrations in ovarian granulosa cell tumors. Mod Pathol 15:951–957. https://doi.org/10.1097/01.MP.0000024290.55261.14

    Article  CAS  PubMed  Google Scholar 

  61. Costa MJ, Walls J, Ames P, Roth LM (1996) Transformation in recurrent ovarian granulosa cell tumors: Ki67 (MIB-1) and p53 immunohistochemistry demonstrates a possible molecular basis for the poor histopathologic prediction of clinical behavior. Hum Pathol 27:274–281. https://doi.org/10.1016/s0046-8177(96)90069-6

    Article  CAS  PubMed  Google Scholar 

  62. Stewart CJ, Brennan BA, Crook ML, Doherty DA, Hammond IG, Leuverink E, Ruba S (2009) Comparison of proliferation indices in primary adult-type granulosa cell tumors of the ovary and their corresponding metastases: an analysis of 14 cases. Int J Gynecol Pathol 28:423–431. https://doi.org/10.1097/PGP.0b013e31819d8153

    Article  PubMed  Google Scholar 

  63. Ala-Fossi SL, Maenpaa J, Aine R, Koivisto P, Koivisto AM, Punnonen R (1997) Prognostic significance of p53 expression in ovarian granulosa cell tumors. Gynecol Oncol 66:475–479. https://doi.org/10.1006/gyno.1997.4803

    Article  CAS  PubMed  Google Scholar 

  64. King LA, Okagaki T, Gallup DG, Twiggs LB, Messing MJ, Carson LF (1996) Mitotic count, nuclear atypia, and immunohistochemical determination of Ki-67, c-myc, p21-ras, c-erbB2, and p53 expression in granulosa cell tumors of the ovary: mitotic count and Ki-67 are indicators of poor prognosis. Gynecol Oncol 61:227–232. https://doi.org/10.1006/gyno.1996.0130

    Article  CAS  PubMed  Google Scholar 

  65. Pinheiro C, Sousa B, Albergaria A, Paredes J, Dufloth R, Vieira D, Schmitt F, Baltazar F (2011) GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histol Histopathol 26:1279–1286. https://doi.org/10.14670/HH-26.1279

  66. Senol S, Aydin A, Kosemetin D, Ece D, Akalin I, Abuoglu H, Duran EA, Aydin D, Erkol B (2016) Gastric adenocarcinoma biomarker expression profiles and their prognostic value. J Environ Pathol Toxicol Oncol 35:207–222. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2016016099

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their gratitude to Mgr. Zachary H. K. Kendall, B.A. (Institute for History of Medicine and Foreign Languages, First Faculty of Medicine, Charles University in Prague) for the English language editing.

Funding

This work was supported by the Ministry of Health, Czech Republic (MH CZ DRO-VFN 64165 and AZV NU21-03–00238), by Charles University (Project UNCE24/MED/018, SVV 260631), and by the European Regional Development Fund (EF16_013/0001674 and BBMRI_CZ LM2023033).

Author information

Authors and Affiliations

Authors

Contributions

KN and PD drew up the study concept and design. All authors participated on material preparation, data collection, and/or analyses. The first draft of the manuscript was written by KN. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Kristýna Němejcová.

Ethics declarations

Ethical approval

The study was approved by the Ethics Committee of the General University Hospital in Prague in compliance with the Helsinki Declaration (No. 2140/19 S-IV). The Ethics Committee waived the requirement for informed consent as according to the Czech Law (Act. no. 373/11, and its amendment Act no. 202/17), it is not necessary to obtain informed consent in fully anonymized studies.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Němejcová, K., Šafanda, A., Kendall Bártů, M. et al. An extensive immunohistochemical analysis of 290 ovarian adult granulosa cell tumors with 29 markers. Virchows Arch (2024). https://doi.org/10.1007/s00428-024-03854-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00428-024-03854-0

Keywords

Navigation