Log in

Gene expression profiling of giant cell tumor of bone reveals downregulation of extracellular matrix components decorin and lumican associated with lung metastasis

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Giant cell tumor of bone (GCTB) displays worrisome clinical features such as local recurrence and occasionally metastatic disease which are unpredictable by morphology. Additional routinely usable biomarkers do not exist. Gene expression profiles of six clinically defined groups of GCTB and one group of aneurysmal bone cyst (ABC) were determined by microarray (n = 33). The most promising differentially expressed genes were validated by Q-PCR as potential biomarkers in a larger patient group (n = 41). Corresponding protein expression was confirmed by immunohistochemistry. Unsupervised hierarchical clustering reveals a metastatic GCTB cluster, a heterogeneous, non-metastatic GCTB cluster, and a primary ABC cluster. Balanced score testing indicates that lumican (LUM) and decorin (DCN) are the most promising biomarkers as they have lower level of expression in the metastatic group. Expression of dermatopontin (DPT) was significantly lower in recurrent tumors. Validation of the results was performed by paired and unpaired t test in primary GCTB and corresponding metastases, which proved that the differential expression of LUM and DCN is tumor specific rather than location specific. Our findings show that several genes related to extracellular matrix integrity (LUM, DCN, and DPT) are differentially expressed and may serve as biomarkers for metastatic and recurrent GCTB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GCTB:

Giant cell tumor of bone

ABC:

Primary aneurysmatic bone cyst

ECM:

Extracellular matrix

cRNA:

Copy ribonucleic acid

DCN:

Decorin

LUM:

Lumican, DPT, dermatopontin

EPYC:

Epiphycan

ZNF14:

Zinc finger protein-14

CLEC2D:

C-type lectin domain family 2-member D

RPL23:

Ribosomal protein L23

FRZB:

Frizzled-related protein

C2orf40:

Chromosome 2 open reading frame 40

FGFBP2:

Fibroblast growth factor binding protein 2

CPXM2:

Carboxypeptidase X-M14 family-member 2

PEG3:

Paternally expressed 3

TGF-β:

Transforming growth factor beta

NRQ:

Normalized relative quantity

DAB:

Diaminobenzidine

M-CSF:

Macrophage colony-stimulating factor

RANKL:

Receptor activator of nuclear factor kappa-B ligand

VEGF:

Vascular endothelial growth factor

HGF:

Hepatocyte growth factor/scatter factor

HIF-1α:

Hypoxia-inducible factor 1-alpha

TKR:

Tyrosine kinase receptor

TNF-α:

Tumor necrosis factor α

IL-6:

Interleukin-6

LIGHT:

Tumor necrosis factor superfamily, member 14

PIGF:

Placental growth factor

FLT-3:

Fms-like tyrosine kinase 3

HGF:

Hepatocyte growth factor

MET:

HGF receptor

MMP-9:

Matrix metalloprotein 9

References

  1. Zheng MH, Fan Y, Wysocki SJ et al (1994) Gene expression of transforming growth factor-beta 1 and its type II receptor in giant cell tumors of bone. Possible involvement in osteoclast-like cell migration. Am J Pathol 145(5):1095–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Joyner CJ, Quinn JM, Triffitt JT, Owen ME, Athanasou NA (1992) Phenotypic characterisation of mononuclear and multinucleated cells of giant cell tumour of bone. Bone Miner 16(1):37–48

    Article  CAS  PubMed  Google Scholar 

  3. Lindeman JH, Hanemaaijer R, Mulder A et al (2009) Cathepsin K is the principal protease in giant cell tumor of bone. Am J Pathol 165:593–600

    Article  Google Scholar 

  4. Forsyth RG, De Boeck G, Taminiau AHM et al (2009) CD33+ CD14− phenotype is characteristic of multinuclear osteoclast-like cells in giant cell tumor of bone. J Bone Miner Res 24(1):70–77

    Article  CAS  PubMed  Google Scholar 

  5. da Costa CET, Annels NE, Faaij CMJM, Forsyth RG, Hogendoorn PCW, Egeler RM (2005) Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis. J Exp Med 201(5):687–693

    Article  PubMed Central  PubMed  Google Scholar 

  6. Reid R, Banerjee SS, Sciot R (2002) WHO classification of tumors of bone: giant cell tumor. In: world health organization classification of tumors. Pathology and genetics of tumors of soft tissue and bone. IARC Press, Lyon, pp 310–312

    Google Scholar 

  7. Edwards JR, Williams K, Kindblom LG et al (2008) Lymphatics and bone. Hum Pathol 39:49–55

    Article  PubMed  Google Scholar 

  8. Blackley HR, Wunder JS, Davis AM, White LM, Kandel R, Bell RS (1999) Treatment of giant cell tumors of long bones with curettage and bone grafting. J Bone Joint Surg 81:811–820

    Article  CAS  PubMed  Google Scholar 

  9. Turcotte RE (2006) Giant cell tumor of bone. Orthop Clin North Am 37:35–51

    Article  PubMed  Google Scholar 

  10. Marcove RC, Sheth DS, Brien EW, Huvos AG, Healey JH (1994) Conservative surgery for giant cell tumors of sacrum. The role of cryosurgery as a supplement to curettage and partial excision. Cancer 74:1253–1260

    Article  CAS  PubMed  Google Scholar 

  11. Domovitov SV, Healey JH (2010) Primary malignant giant-cell tumor of bone has high survival rate. Ann Surg Oncol 17:694–701

    Article  PubMed  Google Scholar 

  12. Balke M, Schremper L, Gebert C et al (2008) Giant cell tumor of bone: Treatment and outcome of 214 cases. J Cancer Res Clin Oncol 134:969–978

    Article  CAS  PubMed  Google Scholar 

  13. Bertoni F, Bacchini P, Staals E (2003) Malignancy in giant cell tumor of bone. Cancer 97:2520–2529

    Article  PubMed  Google Scholar 

  14. Lee C, Espinosa I, Jensen KC et al (2008) Gene expression profiling identifies p63 as a diagnostic marker for giant cell tumor of bone. Mod Pathol 21:531–539

    Article  CAS  PubMed  Google Scholar 

  15. Moskovszky L, Dezsö K, Athanasou NA et al (2010) Centrosome abnormalities in giant cell tumor of bone: Possible association with chromosomal instability. Mod Pathol 23:359–366

    Article  PubMed  Google Scholar 

  16. Moerkerke B, Goetghebeur E (2006) Selecting “significant” differentially expressed genes from the combined perspective of the null and the alternative. J Comput Biol 13:1513–1531

    Article  CAS  PubMed  Google Scholar 

  17. Morgan T, Atkins GJ, Trivett MK et al (2005) Molecular profiling of giant cell tumor of bone and the osteclastic localization of ligand for receptor activator of nuclear factor κ B. Am J Pathol 167:117–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hocking AM, Shinomura T, McQuillan DJ (1998) Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol 17:1–19

    Article  CAS  PubMed  Google Scholar 

  19. Pupa SM, Ménard S, Forti S, Tagliabe E (2002) New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192:259–267

    Article  CAS  PubMed  Google Scholar 

  20. Schaefer L, Iozzo RV (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 31:21305–21309

    Article  Google Scholar 

  21. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1998) Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141:1277–1286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Neill T, Schaefer L, Iozzo RV (2012) Decorin: a guardian from the matrix. Am J Pathol 181(2):380–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kaname S, Ruoslahti E (1996) Betaglycan has multiple binding sites for transforming growth factor-beta 1. Biochem J 315:815–820

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Cabello-Verrugio C, Brandan E (2007) A novel modulatory mechanism of transforming growth factor-β signaling through decorin and LRP-1. J Biol Chem 282:18842–18850

    Article  CAS  PubMed  Google Scholar 

  26. Goldoni S, Humphries A, Nyström A et al (2009) Decorin is a novel antagonistic ligand of the Met receptor. J Cell Biol 185:743–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhu JX, Goldoni S, Bix G et al (2005) Decorin evokes protracted internalization and degradation of the epidermal growth factor receptor via caveolar endocytosis. J Biol Chem 280:32468–32479

    Article  CAS  PubMed  Google Scholar 

  28. Nikitovic D, Katonis P, Tsatsakis A, Karamanos NK, Tzanakakis GN (2008) Lumican, a small leucine-rich proteoglycan. IUBMB Life 60(12):818–823

    Article  CAS  PubMed  Google Scholar 

  29. Vuillermoz B, Khoruzhenko A, D’Onofrio MF et al (2004) The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res 296:294–306

    Article  CAS  PubMed  Google Scholar 

  30. Troup S, Njue C, Kliewer EV et al (2003) Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res 9:207–214

    CAS  PubMed  Google Scholar 

  31. Nikitovic D, Berdiaki A, Zafiropoulos A et al (2008) Lumican expression is positively correlated with the differentiation and negatively with the growth of human osteosarcoma cells. FEBS J 275(2):350–361

    Article  CAS  PubMed  Google Scholar 

  32. Knowles HJ, Athanasou NA (2009) Canonical and non-canonical pathways of osteoclast formation. Histol Histopathol 24(3):337–346

    CAS  PubMed  Google Scholar 

  33. Wallenius V, Hisaoka M, Helou K et al (2000) Overexpression of the hepatocyte growth factor (HGF) receptor (Met) and presence of a truncated and activated intracellular HGF receptor fragment in locally aggressive/malignant human musculoskeletal tumors. Am J Pathol 156(3):821–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Taylor RM, Kashima TG, Knowles HJ, Athanasou NA (2012) VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: implications for giant cell tumour pathobiology. Lab Invest 92(10):1398–1406

    Article  CAS  PubMed  Google Scholar 

  35. Itonaga I, Sabokbar A, Sun SG, Kudo O, Danks L, Ferguson D, Fujikawa Y, Athanasou NA (2004) Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone 34(1):57–64

    Article  CAS  PubMed  Google Scholar 

  36. Kumta SM, Huang L, Cheng YY, Chow LT, Lee KM, Zheng MH (2003) Expression of VEGF and MMP-9 in giant cell tumor of bone and other osteolytic lesions. Life Sci 73(11):1427–1436

    Article  CAS  PubMed  Google Scholar 

  37. Knowles HJ, Athanasou NA (2008) Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J Pathol 215(1):56–66

    Article  CAS  PubMed  Google Scholar 

  38. Neill E (2012) T, Painter H, Buraschi S et al. Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1α, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. J Biol Chem 287(8):5492–5506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Catherino WH, Leppert PC, Stenmark MH et al (2004) Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer 40:204–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Okamoto O, Fujiwara S, Abe M, Sato Y (1999) Dermatopontin interacts with transforming growth factor β and enhances its biological activity. Biochem J 337:537–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Okamoto O, Fujiwara S (2006) Dermatopontin, a novel player in the biology of the extracellular matrix. Connect Tissue Res 47(4):177–189

    Article  CAS  PubMed  Google Scholar 

  42. Groner AC, Meylan S, Ciuffi A et al (2010) KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6:e1000869

    Article  PubMed Central  PubMed  Google Scholar 

  43. Robin NH, Moran RT, Warman M, Ala-Kokko L. Stickler Syndrome. GeneReviews. http://www.ncbi.nlm.nih.gov/books/NBK1302/. Accessed Nov 3 2011

  44. Johnson HJ, Rosenberg L, Choi HU, Garza S, Höök M, Neame PJ (1997) Characterization of epiphycan, a small proteoglycan with a leucine-rich repeat core protein. J Biol Chem 272:18709–18717

    Article  CAS  PubMed  Google Scholar 

  45. Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12:69–78

    Article  CAS  PubMed  Google Scholar 

  46. Chung YS, Baylink DJ, Srivastava AK et al (2004) Effects of secreted frizzled-related protein 3 on osteoblasts in vitro. J Bone Miner Res 19(9):1395–1402

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially carried out by the EuroBoNet Consortium, a Network of Excellence funded by the EU.

Contributions of authors

M Lieveld designed the research study, performed Q-PCR research, interpreted the data, and wrote the paper

E Bodson contributed to writing of the paper and interpretation of the data

G De Boeck performed research (microarray)

B Nouman: contribution of samples and performed research (Q-PCR)

AM Cleton-Jansen performed research (microarray)

E Korsching analyzed the microarray data

MS Benassi and P Picci: contribution of samples

G Sys and B Poffyn: contribution of samples

NA Athanasou: revision and final approval of the article

PCW Hogendoorn: contribution of samples and examination of samples

RG Forsyth designed the research study and examined samples

Manufacturer’s name

Illumina’s Human-6 v2 Expression BeadChips (Illumina®, Son, The Netherlands)

Trizol® (Invitrogen Life Technologies, Carlsbad, CA)

RNeasy-mini kit (Qiagen, Hilden, Germany)

NanoDrop ND-100 Spectrophotometer (Nanodrop® Technologies Inc., Wilmington, DE)

Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA)

Illumina® TotalPrep RNA Amplification Kit (Ambrion, Inc., Austin, TX)

RQ1 RNase–Free DNase (Promega, Leiden, The Netherlands)

iScript cDNA synthesis kit (Biorad Laboratories Ltd. Hertfordshire, UK)

GeNorm Housekee** Gene Selection Kit (Primerdesign, Southampton, Hants)

Lightcycler® 480 (Roche Diagnostics, Vilvoorde, Belgium)

Sybr Green mix (Roche Diagnostics, Vilvoorde, Belgium)

Antibodies (Abcam, UK)

Electrically charged superfrost plus slides (Menzel-Gläser, Braunschweig)

Peroxidase DAB (DAKO, Heverlee, Belgium)

Streptavidin-HRP (DAKO, Heverlee, Belgium)

Conflict of interest

All authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lieveld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lieveld, M., Bodson, E., De Boeck, G. et al. Gene expression profiling of giant cell tumor of bone reveals downregulation of extracellular matrix components decorin and lumican associated with lung metastasis. Virchows Arch 465, 703–713 (2014). https://doi.org/10.1007/s00428-014-1666-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-014-1666-7

Keywords

Navigation