Log in

Expression of Wnt gene family and frizzled receptors in head and neck squamous cell carcinomas

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Genes of the Wnt and Frizzled class, expressed in HNSCC tissue and cell lines, have an established role in cell morphogenesis and differentiation, and also they have oncogenic properties. We studied Wnt and Fz genes as potential tumor-associated markers in HNSCC by qPCR. Expression levels of Wnt and Fz genes in 22 unique frozen samples from HNSCC were measured. We also assessed possible correlation between the expression levels obtained in cancer samples in relation to clinicopathologic outcome. Wnt-1 was not expressed in the majority of the HNSCC studied, whereas Wnt-5A was the most strongly expressed by the malignant tumors. Wnt-10B expression levels were related with higher grade of undifferentiation. Related to Fz genes, Fz-5 showed more expression levels in no-affectation of regional lymph nodes. Kaplan–Meier survival analyses suggest a reduced time of survival for low and high expression of Wnt-7A and Fz-5 mRNA, respectively. qPCR demonstrated that HNSCC express Wnt and Fz members, and suggested that Wnt and Fz signaling is activated in HNSCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hunter T (1997) Oncoprotein networks. Cell 88:333–346

    Article  PubMed  CAS  Google Scholar 

  2. Ramsdell AF, Yost HJ (1998) Molecular mechanisms of vertebrate left-right development. Trends Genet 14:459–465

    Article  PubMed  CAS  Google Scholar 

  3. Parr BA, Shea MJ, Vassileva G et al (1993) Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119:247–261

    PubMed  CAS  Google Scholar 

  4. Riddle RD, Ensini M, Nelson C et al (1995) Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83:631–640

    Article  PubMed  CAS  Google Scholar 

  5. Vogel A, Rodriguez C, Warnken W et al (1995) Dorsal cell fate specified by chick Lmxl during vertebrate limb development. Nature 378:716–720

    Article  PubMed  CAS  Google Scholar 

  6. Dale TC (1998) Signal transduction by the Wnt family ligands. Biochem J 329:209–223

    PubMed  CAS  Google Scholar 

  7. Thorpe CJ, Schlesinger A, Bowerman B (2000) Wnt signaling in Caenorhabditis elegans: regulating repressors and polarizing the cytoskeleton. Trends Cell Biol 10:10–17

    Article  PubMed  Google Scholar 

  8. Kuhl M, Sheldahl LC, Park M et al (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–283

    Article  PubMed  CAS  Google Scholar 

  9. Krasnow RE, Wong LL, Adler PN (1995) Dishevelled is a component of the frizzled signaling pathway in Drosophila. Development 121:4095–4102

    PubMed  CAS  Google Scholar 

  10. Bienz M (2001) Spindles cotton on to junctions, APC and EB1. Nat Cell Biol 3:E67–E68

    Article  PubMed  CAS  Google Scholar 

  11. Bui TD, Zhang L, Rees MC et al (1997) Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer 75:1131–1136

    PubMed  CAS  Google Scholar 

  12. Holcombe RF, Marsh JL, Waterman ML et al (2002) Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol 55:220–226

    Article  PubMed  CAS  Google Scholar 

  13. Howng SL, Wu CH, Cheng TS et al (2002) Differential expression of Wnt genes, beta-catenin and E-cadherin in human brain tumors. Cancer Lett 183:95–101

    Article  PubMed  CAS  Google Scholar 

  14. Rhee CS, Sen M, Lu D et al (2002) Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene 21:6598–6605

    Article  PubMed  CAS  Google Scholar 

  15. Ricken A, Lochhead P, Kontogiannea M et al (2002) Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. Endocrinology 143:2741–2749

    Article  PubMed  CAS  Google Scholar 

  16. Saitoh T, Mine T, Katoh M (2002) Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int J Mol Med 9:515–519

    PubMed  CAS  Google Scholar 

  17. Pham K, Milovanovic T, Barr RJ et al (2003) Wnt ligand expression in malignant melanoma: pilot study indicating correlation with histopathological features. Mol Pathol 56:280–285

    Article  PubMed  CAS  Google Scholar 

  18. Uraguchi M, Morikawa M, Shirakava M et al (2004) Activation of Wnt family expression and signaling in squamous cell carcinomas of the oral cavity. J Dent Res 83:327–332

    Article  PubMed  CAS  Google Scholar 

  19. Zhang W-M, Lo Muzio L, Rubini C et al (2005) Effect of Wnt-1 on β-catenin expression and its relation to Ki-67 and tumor differentiation in oral squamous cell carcinoma. Oncol Rep 13:1095–1099

    PubMed  CAS  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  21. Sambrook J, Maniatis T, Fritsch EF (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  22. Lekven AC, Buckler GR, Kostakis N et al (2003) Wnt1 and Wnt10B function redundantly at the zebrafish midbrain–hindbrain boundary. Dev Biol 254:172–187

    Article  PubMed  CAS  Google Scholar 

  23. Postletwait JH, Yan YL, Gates MA et al (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345–349

    Article  Google Scholar 

  24. Gellner K, Brenner S (1999) Analysis of 148 kb of genomic DNA around the Wnt 1 locus of Fungu rubripes. Genome Res 9:251–258

    PubMed  CAS  Google Scholar 

  25. Nusse R (2001) An ancient cluster of Wnt paralogues. Trends Genet 17:443

    Article  PubMed  CAS  Google Scholar 

  26. Rastegar S, Fridle H, Frommer F et al (1999) Transcriptional regulation of Xvent homeobox genes. Mech Dev 1:139–149

    Article  Google Scholar 

  27. Melby AE, Beach C, Mullius M et al (2002) Patterning the early zebrafish by the opposing actions of bozozok and vox/vent. Development 129:2987–2089

    Google Scholar 

  28. Kraus S, Kork V, Fjose A et al (1992) Expression of four zebrafish Wnt-related genes during embryogenesis. Development 116:249–259

    Google Scholar 

  29. Jonsson M, Dejmek J, Bendahl PO et al (2002) Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res 62:409–416

    PubMed  CAS  Google Scholar 

  30. Olson DJ, Papkoff J (1994) Regulated expression of Wnt family members during proliferation of C57mg mammary cells. Cell Growth Differ 5:197–206

    PubMed  CAS  Google Scholar 

  31. Olson DJ, Gibo DM, Saggers G et al (1997) Reversion of uroepithelial cell tumorigenesis by the ectopic expression of human wnt-5a. Cell Growth Differ 8:417–423

    PubMed  CAS  Google Scholar 

  32. Olson DJ, Oshimura M, Otte AP et al (1998) Ectopic expression of wnt-5a in human renal cell carcinoma cells suppresses in vitro growth and telomerase activity. Tumour Biol 19:244–252

    Article  PubMed  CAS  Google Scholar 

  33. Kremenevskaja N, von Wasielewski R, Rao AS et al (2005) Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene 24:2144–2154

    Article  PubMed  CAS  Google Scholar 

  34. Dejmek J, Leandersson K, Manjer J et al (2005) Expression and signaling activity of Wnt-5a/Discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res 11:520–528

    PubMed  CAS  Google Scholar 

  35. Paul S, Dey A (2008) Wnt signaling and cancer development: therapeutic implication. Neoplasma 55:165–176

    PubMed  CAS  Google Scholar 

  36. He B, Jablons DM (2006) Wnt signaling in stem cells and lung cancer. Ernst Schering Found Symp Proc 5:27–58

    Article  PubMed  Google Scholar 

  37. Tennis M, Van Scoyk M, Winn RA (2007) Role of the Wnt signaling pathway and lung cancer. J Thorac Oncol 2:889–892

    Article  PubMed  Google Scholar 

  38. Nakashima T, Liu D, Nakano J et al (2008) Oncol Rep 19:203–209

    PubMed  Google Scholar 

  39. Lo Muzio L (2001) A possible role for the Wnt-1 pathway in oral carcinogenesis. Crit Rev Oral Biol Med 12:152–165

    Article  PubMed  CAS  Google Scholar 

  40. Lo Muzio L, Pannone G, Staibano S et al (2002) WNT-1 expression in basal cell carcinoma of head and neck. An immunohistochemical and confocal study with regard to the intracellular distribution of beta-catenin. Anticancer Res 22:565–576

    PubMed  CAS  Google Scholar 

  41. Yeh KT, Chang JG, Lin TH et al (2003) Correlation between protein expression and epigenetic and mutation changes of Wnt pathway-related genes in oral cancer. Int J Oncol 23:1001–1007

    PubMed  CAS  Google Scholar 

  42. Chang HW, Roh JL, Jeong EJ et al (2008) Wnt signaling controls radiosensitivity via cyclooxygenase-2-mediated Ku expression in head and neck cancer. Int J Cancer 122:100–107

    Article  PubMed  CAS  Google Scholar 

  43. Roche Applied Science [database on the Internet] [cited December 20, 2005]. Assay Design Center/ProbeFinder. Homo sapiens (Human). Available from http://www.universalprobelibrary.com

  44. Roche Applied Science [database on the Internet] [cited December 20, 2005]. Universal ProbeLibrary. Universal ProbeLibrary interest site. Assay Design Center/ProbeFinder. Homo sapiens (Human). Available from http://www.roche-applied-science.com

Download references

Acknowledgements

The authors thank Mrs. M. Haz Conde and I. Santamarina Caínzos for technical support and S. Pértega Díaz for statistical assistance. S.M. Díaz Prado is supported by an Isidro Parga Pondal research contract by Xunta de Galicia (A Coruña, Galicia, Spain). Cancer research in our laboratory is supported by “Fundación Juan Canalejo-Marítimo de Oza”.

Authors’ disclosures of potential conflicts of interest

The authors declare that they have no competing interests.

Authors’ contributions

Conception and design: S.M. Díaz Prado, L.M. Antón Aparicio.

Provision of study materials and patients: J.L. López Cedrún, S. Sironvalle Soliva.

Collection and assembly of data: S.M. Díaz Prado, G. Aparicio Gallego, V. Medina Villaamil.

Data analysis and interpretation: S.M. Díaz Prado, L.M. Antón Aparicio, M. Blanco Calvo.

Manuscript writing: S.M. Díaz Prado, L.M. Antón Aparicio, R. García Campelo, M Valladares Ayerbes.

Final approval of manuscript: S.M. Díaz Prado, V. Medina Villaamil, G. Aparicio Gallego, M. Blanco Calvo, J.L. López Cedrún, S. Sironvalle Soliva, M. Valladares Ayerbes, R. García Campelo, L.M. Antón Aparicio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Antón Aparicio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz Prado, S.M., Medina Villaamil, V., Aparicio Gallego, G. et al. Expression of Wnt gene family and frizzled receptors in head and neck squamous cell carcinomas. Virchows Arch 455, 67–75 (2009). https://doi.org/10.1007/s00428-009-0793-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0793-z

Keywords

Navigation