Log in

Sustained visual attention improves visuomotor timing

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Relative to audition, vision is considered much less trustworthy in sensorimotor timing such as synchronizing finger movements with a temporally regular sequence. Visuomotor timing requires maintaining attention over time, whereas the sustained visual attention may not be well held in conventional visuomotor timing task settings where flashing visual stimuli consisted of a briefly presented flash and a long blank period. In the present study, the potential attentional lapses in time due to the disappearance of the flash were carefully controlled in Experiment 1 by changing the color of the flash instead of its disappearance, or in Experiment 2 by adding an additional continuously presented fixation point serving as an external attentional cue when the flash disappeared. Improvement of visuomotor timing performance was found in both experiments. The finding suggests a role of enhanced sustained visual attention in improving visuomotor timing, by which vision could also be a trustworthy modality for processing temporal information in sensorimotor interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes used during the current study are available from the corresponding author on reasonable request.

References

  • Bartlett, N. R., & Bartlett, S. C. (1959). Synchronization of a motor response with an anticipated sensory event. Psychological Review, 66(4), 203–218.

    Article  PubMed  Google Scholar 

  • Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31(10), 1–21.

    Article  Google Scholar 

  • Chen, L., & Vroomen, J. (2013). Intersensory binding across space and time: A tutorial review. Attention, Perception & Psychophysics, 75(5), 790–811.

    Article  Google Scholar 

  • Chen, Y., Repp, B. H., & Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tap**: Comparisons between auditory and visual pacing and feedback conditions. Human Movement Science, 21(4), 515–532.

    Article  PubMed  Google Scholar 

  • Colley, I. D., Varlet, M., MacRitchie, J., & Keller, P. E. (2018). The influence of visual cues on temporal anticipation and movement synchronization with musical sequences. Acta Psychologica, 191, 190–200.

    Article  PubMed  Google Scholar 

  • Dalla Bella, S., & Sowiński, J. (2015). Uncovering beat deafness: Detecting rhythm disorders with synchronized finger tap** and perceptual timing tasks. Journal of Visualized Experiments, 97, 51761.

    Google Scholar 

  • Esterman, M., Noonan, S. K., Rosenberg, M., & Degutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23, 2712–2723.

    Article  PubMed  Google Scholar 

  • Esterman, M., & Rothlein, D. (2019). Models of sustained attention. Current Opinion in Psychology, 29, 174–180.

    Article  PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

    Article  PubMed  Google Scholar 

  • Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge University Press.

    Book  Google Scholar 

  • Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research. Annals of the New York Academy of Sciences, 1396, 70–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gan, L., Huang, Y., Zhou, L., Qian, C., & Wu, X. (2015). Synchronization to a bouncing ball with a realistic motion trajectory. Scientific Reports, 5, 11974.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grahn, J. A., Henry, M. J., & McAuley, J. D. (2011). FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa. NeuroImage, 54(2), 1231–1243.

    Article  PubMed  Google Scholar 

  • Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: Premotor and striatal interactions in musicians and nonmusicians during beat perception. Journal of Neuroscience, 29(23), 7540–7548.

    Article  PubMed  Google Scholar 

  • Gu, L., Huang, Y., & Wu, X. (2019). Advantage of audition over vision in a perceptual timing task but not in a sensorimotor timing task. Psychological Research, 84:2046-2056.

  • Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see: Auditory encoding of visual temporal sequences. Psychological Science, 16(3), 228–235.

    Article  PubMed  Google Scholar 

  • Holcombe, A. O. (2009). Seeing slow and seeing fast: Two limits on perception. Trends in Cognitive Sciences, 13(5), 216–221.

    Article  PubMed  Google Scholar 

  • Hove, M. J., Fairhurst, M. T., Kotz, S. A., & Keller, P. E. (2013). Synchronizing with auditory and visual rhythms: An fMRI assessment of modality differences and modality appropriateness. NeuroImage, 67, 313–321.

    Article  PubMed  Google Scholar 

  • Hove, M. J., Spivey, M. J., & Krumhansl, C. L. (2010). Compatibility of motion facilitates visuomotor synchronization. Journal of Experimental Psychology Human Perception and Performance, 36(6), 1525–1534.

    Article  PubMed  Google Scholar 

  • Huang, Y., Gu, L., Yang, J., Zhong, S., & Wu, X. (2018). Relative contributions of the speed characteristic and other possible ecological factors in synchronization to a visual beat consisting of periodically moving stimuli. Frontiers in Psychology, 9:1226. https://doi.org/10.3389/fpsyg.2018.01226

    Article  PubMed  PubMed Central  Google Scholar 

  • Iversen, J. R., & Balasubramaniam, R. (2016). Synchronization and temporal processing. Current Opinion in Behavioral Sciences, 8, 175–180.

    Article  Google Scholar 

  • Iversen, J. R., Patel, A. D., Nicodemus, B., & Emmorey, K. (2015). Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition, 134, 232–244.

    Article  PubMed  Google Scholar 

  • Jacoby, N., Tishby, N., Repp, B. H., Ahissar, M., & Keller, P. E. (2015). Parameter estimation of linear sensorimotor synchronization models: Phase correction, period correction, and ensemble synchronization. Timing & Time Perception, 3(1–2), 52–87.

    Article  Google Scholar 

  • Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic brain network correlates of spontaneous fluctuations in attention. Cerebral Cortex, 27, 1831–1840.

    PubMed  Google Scholar 

  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139, 870–900.

    Article  PubMed  Google Scholar 

  • Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–159.

    Article  Google Scholar 

  • Mu, Y., Huang, Y., Ji, C., Gu, L., & Wu, X. (2018). Auditory over visual advantage of sensorimotor synchronization in 6- to 7-year-old children but not in 12- to 15-year-old children and adults. Journal of Experimental Psychology. Human Perception and Performance, 44(5), 818–826.

    Article  PubMed  Google Scholar 

  • O’Connell, R. G., Dockree, P. M., Robertson, I. H., Bellgrove, M. A., Foxe, J. J., & Kelly, S. P. (2009). Uncovering the neural signature of lapsing attention: Electrophysiological signals predict errors up to 20 s before they occur. Journal of Neuroscience, 29, 8604–8611.

    Article  PubMed  Google Scholar 

  • Patel, A. D. (2014). The evolutionary biology of musical rhythm: Was darwin wrong? PLoS Biology, 12(3), e1001821.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19(10), 827–830.

    Article  PubMed  Google Scholar 

  • Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. (2005). The influence of metricality and modality on synchronization with a beat. Experimental Brain Research, 163(2), 226–238.

    Article  PubMed  Google Scholar 

  • Povel, D.-J., & Essens, P. (1985). Perception of temporal patterns. Music Perception, 2(4), 411–440.

    Article  Google Scholar 

  • Repp, B. H. (2005). Sensorimotor synchronization: A review of the tap** literature. Psychonomic Bulletin & Review, 12(6), 969–992.

    Article  Google Scholar 

  • Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: New evidence from synchronization with simultaneous visual and auditory sequences. Journal of Experimental Psychology. Human Perception and Performance, 28(5), 1085–1099.

    Article  PubMed  Google Scholar 

  • Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychological Research Psychologische Forschung, 68(4), 252–270.

    Article  PubMed  Google Scholar 

  • Repp, B. H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403–452.

    Article  Google Scholar 

  • Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35, 146–160.

    Article  PubMed  Google Scholar 

  • Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31(10), 3805–3812.

    Article  PubMed  Google Scholar 

  • Thaut, M. H., Kenyon, G. P., Schauer, M. L., & McIntosh, G. C. (1999). The connection between rhythmicity and brain function. IEEE Engineering in Medicine and Biology Magazine: THe Quarterly Magazine of the Engineering in Medicine & Biology Society, 18(2), 101–108.

    Article  Google Scholar 

  • Varlet, M., Coey, C. A., Schmidt, R. C., Marin, L., Bardy, B. G., & Richardson, M. J. (2014). Influence of stimulus velocity profile on rhythmic visuomotor coordination. Journal of Experimental Psychology. Human Perception and Performance, 40(5), 1849–1860.

    Article  PubMed  Google Scholar 

  • Varlet, M., Marin, L., Issartel, J., Schmidt, R. C., & Bardy, B. G. (2012). Continuity of visual and auditory rhythms influences sensorimotor coordination. PLoS One, 7(9), e44082.

    Article  PubMed  PubMed Central  Google Scholar 

  • Versaci, L., & Laje, R. (2021). Time-oriented attention improves accuracy in a paced finger-tap** task. European Journal of Neuroscience, 54(1), 4212–4229.

    Article  Google Scholar 

  • Vorberg, D., & Wing, A. (1996). Modeling variability and dependence in timing. In H. Heuer, & S. W. Keele (Eds.). Handbook of perception and action (Vol. 2, pp. 181–262). London: Academic Press.

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.

    Article  PubMed  Google Scholar 

  • Zelic, G., Varlet, M., Kim, J., & Davis, C. (2016). Influence of pacer continuity on continuous and discontinuous visuo-motor synchronisation. Acta Psychologica, 169, 61–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Provincial Key Research and Development Program (2019B010152001) and the National Natural Science Foundation of China (31971033). The study was performed via the research platform of **ang Wu’s lab, we thank the lab members who have contributed to establishing the platform: Liang Zhou, Lingyu Gan, Cheng Qian, Feiyi Ouyang, Junkai Yang, and Li Gu.

Funding

This work was supported by Guangdong Provincial Key Research and Development Program (2019B010152001) and National Natural Science Foundation of China (31971033).

Author information

Authors and Affiliations

Authors

Contributions

YH: methodology, software, investigation, formal analysis. SZ: methodology, software, investigation, formal analysis, writing—original draft, writing—review and editing. LZ: software, formal analysis, writing—review and editing. MS: software, investigation. XW: conceptualization, methodology, software, formal analysis, writing—original draft, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to **ang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The research protocols in this study were approved by the Institutional Review Board of Psychology Department of Sun Yat-Sen University. The research protocols mostly followed the tenets of the Declaration of Helsinki, with confidentiality and privacy of the collected data protected by the Institutional Review Board of Psychology Department of Sun Yat-Sen University.

Consent to participate

All subjects gave written informed consent.

Consent to publish

All subjects have consented to the submission of the report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 162 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhong, S., Zhan, L. et al. Sustained visual attention improves visuomotor timing. Psychological Research 86, 2059–2066 (2022). https://doi.org/10.1007/s00426-021-01629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-021-01629-9

Navigation