Log in

Detection of motion onset and offset: reaction time and visual evoked potential analysis

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Manual reaction time (RT) and visual evoked potentials (VEP) were measured in motion onset and offset detection tasks. A considerable homology was observed between the temporal structure of RTs and VEP intervals, provided that the change in motion was detected as soon as the VEP signal has reached critical threshold amplitude. Both manual reactions and VEP rise in latency as the velocity of the onset or offset motion decreases and were well approximated by the same negative power function with the exponent close to −2/3. This indicates that motion processing is normalised by subtracting the initial motion vector from ongoing motion. A comparison of the motion onset VEP signals in two different conditions, in one of which the observer was instructed to abstain from the reaction and in the other to indicate as fast as possible the beginning of the motion, contained accurate information about the manual response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allik, J., & Dzhafarov, E. N. (1984). Reaction time to motion onset: local dispersion model analysis. Vision Research, 24, 99–101.

    Article  PubMed  Google Scholar 

  • Amano, K., Nishida, S., & Takeda, T. (2006). MEG responses correlated with the visual perception of velocity change. Vision Research, 46, 336–345.

    Article  PubMed  Google Scholar 

  • Bachmann, T. (2000). Microgenetic approach to the conscious mind. Amsterdam: John Benjamins Publishing Company.

    Google Scholar 

  • Bair, W., Cavanaugh, J. R., Smith, M. A, & Movshon, J. A. (2002). The timing of response onset and offset in macaque visual neurons. Journal of Neuroscience, 22, 3189–3205.

    PubMed  Google Scholar 

  • Bakardjian, H., Uchida, A., Endo, H., & Takeda, T. (2002). Magnetoencephalographic study of speed-dependent responses in apparent movement. Clinical Neurophysiology, 113, 1586–1597.

    Article  PubMed  Google Scholar 

  • Ball, K., & Sekuler, R. (1980). Models of stimulus uncertainty in motion perception. Psychological Review, 87, 435–469.

    Article  PubMed  Google Scholar 

  • Beauchamp, M. S., Cox, R. W., & DeYoe, E. A. (1997) Graded effects of spatial and featural attention on human area MT and associated motion processing areas. Journal of Neurophysiology, 78, 516–520.

    PubMed  Google Scholar 

  • Collewijn, H. (1972). Latency and gain of the rabbit’s optokinetic reactions to small movements. Brain Research, 36, 59–70.

    Article  PubMed  Google Scholar 

  • Conover, W. J. (1980). Practical nonparametric statistics. NY: Wiley.

    Google Scholar 

  • Culham, J., He, S., Dukelow, S., & Verstraten, F. A. (2001). Visual motion and the human brain: what has neuroimaging told us? Acta Psychologica, 101, 69–94.

    Article  Google Scholar 

  • Dzhafarov, E. N., & Allik, J. (1984). A general theory of motion detection. In M. Rauk (Ed.), Computational models of hearing and vision (pp. 77–84). Tallinn: Estonian Academy of Sciences.

    Google Scholar 

  • Dzhafarov, E. N., Sekuler, R., & Allik, J. (1993). Detection of changes in speed and direction of motion: reaction time analysis. Perception and Psychophysics, 54, 733–750.

    PubMed  Google Scholar 

  • Gratton, G., & Coles, M. G. H. (1989). Generalization and evaluation of eye-movement correction procedures. Journal of Psychophysiology, 3, 14–16.

    Google Scholar 

  • Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484.

    Article  PubMed  Google Scholar 

  • Hohnsbein, J., & Mateeff, S. (1992). The relation between the velocity of visual motion and the reaction time to motion onset and offset. Vision Research, 32, 1789–1791.

    Article  PubMed  Google Scholar 

  • Hohnsbein, J., & Mateeff, S. (1998). The time it takes to detect changes in speed and direction of visual motion. Vision Research, 38, 2569–2573.

    Article  PubMed  Google Scholar 

  • Kaneoke, Y., Bundou, M., & Kakigi, R. (1998). Timing of motion representation in the human visual system. Brain Research, 790, 195–201.

    Article  PubMed  Google Scholar 

  • Kawakami, O., Kaneoke, Y., Maruyama, K., Kakigi, R., Okada, T., Sadato, N., & Yonekura, Y. (2002). Visual detection of motion speed in humans: spatiotemporal analysis by fMRI and MEG. Human Brain Map**, 16, 104–118.

    Article  PubMed  Google Scholar 

  • Kuba, M., & Kubová, Z. (1992). Visual evoked potentials specific for motion onset. Documenta Ophthalmologica, 80, 83–89.

    Article  PubMed  Google Scholar 

  • Kuba, M., Kremláček, J., & Kubová, Z. (1998). Cognitive evoked potentials related to visual perception of motion in human subjects. Physiological Research, 47, 265–270.

    PubMed  Google Scholar 

  • Kubová, Z., Kremláček, J., Szanyi, J., Chlubnová, J., & Kuba, M. (2002). Visual event-related potentials to moving stimuli: normative data. Physiological Research, 51, 199–204.

    PubMed  Google Scholar 

  • Markwardt, F., Göpfert, E., & Müller, R. (1988). Influence of velocity, temporal frequency and initial phase position of grating patterns on motion VEP. Biomedica Biochimica Acta, 47, 753–760.

    PubMed  Google Scholar 

  • Maruyama, K., Kaneoke, Y., Watanabe, K., & Kakigi, R. (2002). Human cortical responses to coherent and incoherent motion as measured by magnetoencephalography. Neuroscience Research, 44, 195–205.

    Article  PubMed  Google Scholar 

  • Mashhour, M. (1964). Psychophysical relations in the perception of velocity. Stockholm: Almquist & Wiksell.

    Google Scholar 

  • Mateeff, S., Genova, B., & Hohnsbein, J. (1999). The simple reaction time to changes in direction of visual motion. Experimental Brain Research, 124, 391–394.

    Article  Google Scholar 

  • Mateeff, S., Dimitrov, G., Genova, B., Likova, L., Stefanova, M., & Hohnsbein, J. (2000). The discrimination of abrupt changes in speed and direction of visual motion. Vision Research, 40, 409–415.

    Article  PubMed  Google Scholar 

  • Müller, R., Göpfert, E., Breuer, D., & Greenlee, M. W. (1999). Motion VEPs with simultaneous measurement of perceived velocity. Documenta Ophthalmologica, 97, 121–134.

    Article  Google Scholar 

  • Niedeggen, M., Sahraie, A., Hesselmann, G., Milders, M., & Blakemore, C. (2002). Is experimental motion blindness due to sensory suppression? An ERP approach. Cognitive Brain Research, 13, 241–247.

    Article  PubMed  Google Scholar 

  • Patzwahl, D. R., & Zanker, J. M. (2000). Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modeling. European Journal of Neuroscience, 12, 273–282.

    Article  PubMed  Google Scholar 

  • Piéron, H. (1920). Nouvelles recherches su l’analyse du temps de latence sensorielle en fonction des intensités exitatrice. L’Année Psychologique, 22, 58–142.

    Google Scholar 

  • Raymond, J. E. (2000). Attentional modulation of visual motion perception. Trends in Cognitive Sciences, 4, 42–50.

    Article  PubMed  Google Scholar 

  • Schellart, N. A. M., Trindade, M. J. G., Reits, D., Verbunt, J. P. A., & Spekreijse, H. (2004). Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magno-electroencephalography. Vision Research, 44, 119–134.

    Article  PubMed  Google Scholar 

  • Spekreijse, H., Dagnelie, G., Maier, J., & Regan, D. (1985). Flicker and movement constituents of the pattern reversal response. Vision Research, 25, 1297–1304.

    Article  PubMed  Google Scholar 

  • Tynan, P. D., & Sekuler, R. (1982). Motion processing in peripheral vision: reaction time and perceived velocity. Vision Research, 22, 61–68.

    Article  PubMed  Google Scholar 

  • Wang, L., Kaneoke, Y., & Kakigi, R. (2003). Spatiotemporal separability in the human cortical response to visual motion speed: a magnetoencephalography study. Neuroscience Research, 47, 109–116.

    Article  PubMed  Google Scholar 

  • Whitney, D., Goltz, H. C., Thomas, C. G., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Flexible retinotopy: motion-dependent position coding in the visual cortex. Science, 302, 878–881.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tiit Mogom for technical assistance and programming, Anne Must for running the experiments and Raili Põldsaar for language-correction of an early version of the manuscript. This study was supported by a grant from the Estonian Science Foundation (6244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kairi Kreegipuu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreegipuu, K., Allik, J. Detection of motion onset and offset: reaction time and visual evoked potential analysis. Psychological Research 71, 703–708 (2007). https://doi.org/10.1007/s00426-006-0059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-006-0059-1

Keywords

Navigation