Log in

New functions and roles of the Na+-H+-exchanger NHE3

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it contributes to hydrogen secretion and sodium (re)absorption. The roles of this transporter have been studied by the use of the respective knockout mice and by using pharmacological inhibitors. Whole-body NHE3 knockout mice suffer from a high mortality rate (with only ∼30% of mice surviving into adulthood), and based on the expression of NHE3 in both intestine and kidney, some conclusions that were originally derived were based on this rather complex phenotype. In the last decade, more refined models have been developed that added temporal and spatial control of NHE3 expression. For example, novel mouse models have been developed with a knockout of NHE3 in intestinal epithelial cells, tubule/collecting duct of the kidney, proximal tubule of the kidney, and thick ascending limb of the kidney. These refined models have significantly contributed to our understanding of the role of NHE3 in a tissue/cell type-specific manner. In addition, tenapanor was developed, which is a non-absorbable, intestine-specific NHE3 inhibitor. In rat and human studies, tenapanor lowered intestinal Pi uptake and was effective in lowering plasma Pi levels in patients on hemodialysis. Of note, diarrhea is seen as a side effect of tenapanor (with its indication for the treatment of constipation) and in intestine-specific NHE3 knockout mice; however, effects on plasma Pi were not supported by this mouse model which showed enhanced and not reduced intestinal Pi uptake. Further studies indicated that the gut microbiome in mice lacking intestinal NHE3 resembles an intestinal environment favoring the competitive advantage of inflammophilic over anti-inflammatory species, something similar seen in patients with inflammatory bowel disease. This review will highlight recent developments and summarize newly gained insight from these refined models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bailey MA, Giebisch G, Abbiati T, Aronson PS, Gawenis LR, Shull GE, Wang T (2004) NHE2-mediated bicarbonate reabsorption in the distal tubule of NHE3 null mice. J Physiol 561:765–775. https://doi.org/10.1113/jphysiol.2004.074716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Besse-Eschmann V, Klisic J, Nief V, Le Hir M, Kaissling B, Ambuhl PM (2002) Regulation of the proximal tubular sodium/proton exchanger NHE3 in rats with puromycin aminonucleoside (PAN)-induced nephrotic syndrome. J Am Soc Nephrol 13:2199–2206. https://doi.org/10.1097/01.asn.0000028839.52271.df

    Article  CAS  PubMed  Google Scholar 

  3. Biancalana E, Rossi C, Raggi F, Distaso M, Trico D, Baldi S, Ferrannini E, Solini A (2023) Empagliflozin and renal sodium-hydrogen exchange in healthy subjects. J Clin Endocrinol Metab 108:e567–e573. https://doi.org/10.1210/clinem/dgad088

    Article  PubMed  PubMed Central  Google Scholar 

  4. Booth IW, Stange G, Murer H, Fenton TR, Milla PJ (1985) Defective jejunal brush-border Na+/H+ exchange: a cause of congenital secretory diarrhoea. Lancet 1:1066–1069. https://doi.org/10.1016/s0140-6736(85)92369-4

    Article  CAS  PubMed  Google Scholar 

  5. Chey WD, Lembo AJ, Yang Y, Rosenbaum DP (2021) Efficacy of tenapanor in treating patients with irritable bowel syndrome with constipation: a 26-week, placebo-controlled phase 3 trial (T3MPO-2). Am J Gastroenterol 116:1294–1303. https://doi.org/10.14309/ajg.0000000000001056

    Article  CAS  PubMed  Google Scholar 

  6. Chilton RJ (2020) Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diabetes Obes Metab 22:16–29. https://doi.org/10.1111/dom.13854

    Article  CAS  PubMed  Google Scholar 

  7. de Bruijn PI, Larsen CK, Frische S, Himmerkus N, Praetorius HA, Bleich M, Leipziger J (2015) Furosemide-induced urinary acidification is caused by pronounced H+ secretion in the thick ascending limb. Am J Physiol Renal Physiol 309:F146–F153. https://doi.org/10.1152/ajprenal.00154.2015

    Article  CAS  PubMed  Google Scholar 

  8. Dharia A, Khan A, Sridhar VS, Cherney DZI (2023) SGLT2 inhibitors: the sweet success for kidneys. Annu Rev Med 74:369–384. https://doi.org/10.1146/annurev-med-042921-102135

    Article  CAS  PubMed  Google Scholar 

  9. Di Sole F, Cerull R, Petzke S, Casavola V, Burckhardt G, Helmle-Kolb C (2003) Bimodal acute effects of A1 adenosine receptor activation on Na+/H+ exchanger 3 in opossum kidney cells. J Am Soc Nephrol 14:1720–1730. https://doi.org/10.1097/01.asn.0000072743.97583.db

    Article  PubMed  Google Scholar 

  10. Dizin E, Olivier V, Maire C, Komarynets O, Sassi A, Roth I, Loffing J, de Seigneux S, Maillard M, Rutkowski JM, Edwards A, Feraille E (2020) Time-course of sodium transport along the nephron in nephrotic syndrome: the role of potassium. FASEB J 34:2408–2424. https://doi.org/10.1096/fj.201901345R

    Article  CAS  PubMed  Google Scholar 

  11. Dominguez Rieg JA, de la Mora CS, Rieg T (2016) Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3. Am J Physiol Regul Integr Comp Physiol 311:R1186–R1191. https://doi.org/10.1152/ajpregu.00372.2016

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dominguez Rieg JA, Rieg T (2019) What does sodium-glucose co-transporter 1 inhibition add: prospects for dual inhibition. Diabetes Obes Metab 21(Suppl 2):43–52. https://doi.org/10.1111/dom.13630

    Article  CAS  PubMed  Google Scholar 

  13. Dominguez Rieg JA, Xue J, Rieg T (2020) Tubular effects of sodium-glucose cotransporter 2 inhibitors: intended and unintended consequences. Curr Opin Nephrol Hypertens 29:523–530. https://doi.org/10.1097/MNH.0000000000000632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. el Marjou F, Janssen KP, Chang BH, Li M, Hindie V, Chan L, Louvard D, Chambon P, Metzger D, Robine S (2004) Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39:186–193. https://doi.org/10.1002/gene.20042

    Article  CAS  PubMed  Google Scholar 

  15. Engevik MA, Aihara E, Montrose MH, Shull GE, Hassett DJ, Worrell RT (2013) Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am J Physiol Gastrointest Liver Physiol 305:G697–G711. https://doi.org/10.1152/ajpgi.00184.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engevik MA, Engevik KA, Yacyshyn MB, Wang J, Hassett DJ, Darien B, Yacyshyn BR, Worrell RT (2015) Human clostridium difficile infection: inhibition of NHE3 and microbiota profile. Am J Physiol Gastrointest Liver Physiol 308:G497–G509. https://doi.org/10.1152/ajpgi.00090.2014

    Article  CAS  PubMed  Google Scholar 

  17. Fenton RA, Murali SK, Kaji I, Akiba Y, Kaunitz JD, Kristensen TB, Poulsen SB, Dominguez Rieg JA, Rieg T (2019) Adenylyl cyclase 6 expression is essential for cholera toxin-induced diarrhea. J Infect Dis 220:1719–1728. https://doi.org/10.1093/infdis/jiz013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fenton RA, Poulsen SB, de la Mora CS, Soleimani M, Busslinger M, Dominguez Rieg JA, Rieg T (2015) Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. Am J Physiol Renal Physiol 308:F1409–F1420. https://doi.org/10.1152/ajprenal.00129.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fenton RA, Poulsen SB, de la Mora CS, Soleimani M, Dominguez Rieg JA, Rieg T (2017) Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis. Kidney Int 92:397–414. https://doi.org/10.1016/j.kint.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Finberg KE, Wagner CA, Bailey MA, Paunescu TG, Breton S, Brown D, Giebisch G, Geibel JP, Lifton RP (2005) The B1-subunit of the H(+) ATPase is required for maximal urinary acidification. Proc Natl Acad Sci U S A 102:13616–13621. https://doi.org/10.1073/pnas.0506769102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  22. Gujral T, Kumar A, Priyamvada S, Saksena S, Gill RK, Hodges K, Alrefai WA, Hecht GA, Dudeja PK (2015) Mechanisms of DRA recycling in intestinal epithelial cells: effect of enteropathogenic E. coli. Am J Physiol Cell Physiol 309:C835–C846. https://doi.org/10.1152/ajpcell.00107.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gurley SB, Riquier-Brison ADM, Schnermann J, Sparks MA, Allen AM, Haase VH, Snouwaert JN, Le TH, McDonough AA, Koller BH, Coffman TM (2011) AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab 13:469–475. https://doi.org/10.1016/j.cmet.2011.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harris AN, Castro RA, Lee HW, Verlander JW, Weiner ID (2021) Role of the renal androgen receptor in sex differences in ammonia metabolism. Am J Physiol Renal Physiol 321:F629–F644. https://doi.org/10.1152/ajprenal.00260.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harrison CA, Laubitz D, Ohland CL, Midura-Kiela MT, Patil K, Besselsen DG, Jamwal DR, Jobin C, Ghishan FK, Kiela PR (2018) Microbial dysbiosis associated with impaired intestinal Na(+)/H(+) exchange accelerates and exacerbates colitis in ex-germ free mice. Mucosal Immunol 11:1329–1341. https://doi.org/10.1038/s41385-018-0035-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayashi H, Szaszi K, Coady-Osberg N, Furuya W, Bretscher AP, Orlowski J, Grinstein S (2004) Inhibition and redistribution of NHE3, the apical Na+/H+ exchanger, by Clostridium difficile toxin B. J Gen Physiol 123:491–504. https://doi.org/10.1085/jgp.200308979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He P, Yun CC (2010) Mechanisms of the regulation of the intestinal Na+/H+ exchanger NHE3. J Biomed Biotechnol 2010:238080. https://doi.org/10.1155/2010/238080

    Article  CAS  PubMed  Google Scholar 

  28. He P, Zhao L, No YR, Karvar S, Yun CC (2016) The NHERF1 PDZ1 domain and IRBIT interact and mediate the activation of Na+/H+ exchanger 3 by ANG II. Am J Physiol Renal Physiol 311:F343–F351. https://doi.org/10.1152/ajprenal.00247.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holmberg C, Perheentupa J (1985) Congenital Na+ diarrhea: a new type of secretory diarrhea. J Pediatr 106:56–61. https://doi.org/10.1016/s0022-3476(85)80465-0

    Article  CAS  PubMed  Google Scholar 

  30. Hropot M, Juretschke HP, Langer KH, Schwark JR (2001) S3226, a novel NHE3 inhibitor, attenuates ischemia-induced acute renal failure in rats. Kidney Int 60:2283–2289. https://doi.org/10.1046/j.1523-1755.2001.00058.x

    Article  CAS  PubMed  Google Scholar 

  31. Janecke AR, Heinz-Erian P, Yin J, Petersen BS, Franke A, Lechner S, Fuchs I, Melancon S, Uhlig HH, Travis S, Marinier E, Perisic V, Ristic N, Gerner P, Booth IW, Wedenoja S, Baumgartner N, Vodopiutz J, Frechette-Duval MC et al (2015) Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet 24:6614–6623. https://doi.org/10.1093/hmg/ddv367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jenkin KA, Han Y, Lin S, He P, Yun CC (2022) Nedd4-2-dependent ubiquitination potentiates the inhibition of human NHE3 by cholera toxin and enteropathogenic Escherichia coli. Cell Mol Gastroenterol Hepatol 13:695–716. https://doi.org/10.1016/j.jcmgh.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  33. King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, Minassian NA, Jafri Q, Pan D, Kohler J, Kumaraswamy P, Kozuka K, Lewis JG, Dragoli D, Rosenbaum DP, O'Neill D, Plain A, Greasley PJ, Jonsson-Rylander AC et al (2018) Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med 10. https://doi.org/10.1126/scitranslmed.aam6474

  34. Kovacikova J, Winter C, Loffing-Cueni D, Loffing J, Finberg KE, Lifton RP, Hummler E, Rossier B, Wagner CA (2006) The connecting tubule is the main site of the furosemide-induced urinary acidification by the vacuolar H+-ATPase. Kidney Int 70:1706–1716. https://doi.org/10.1038/sj.ki.5001851

    Article  CAS  PubMed  Google Scholar 

  35. Krishnan D, Liu L, Wiebe SA, Casey JR, Cordat E, Alexander RT (2015) Carbonic anhydrase II binds to and increases the activity of the epithelial sodium-proton exchanger, NHE3. Am J Physiol Renal Physiol 309:F383–F392. https://doi.org/10.1152/ajprenal.00464.2014

    Article  CAS  PubMed  Google Scholar 

  36. Laubitz D, Gurney MA, Midura-Kiela M, Clutter C, Besselsen DG, Chen H, Ghishan FK, Kiela PR (2022) Decreased NHE3 expression in colon cancer is associated with DNA damage, increased inflammation and tumor growth. Sci Rep 12:14725. https://doi.org/10.1038/s41598-022-19091-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ledoussal C, Woo AL, Miller ML, Shull GE (2001) Loss of the NHE2 Na(+)/H(+) exchanger has no apparent effect on diarrheal state of NHE3-deficient mice. Am J Physiol Gastrointest Liver Physiol 281:G1385–G1396. https://doi.org/10.1152/ajpgi.2001.281.6.G1385

    Article  CAS  PubMed  Google Scholar 

  38. Li XC, Leite APO, Zheng X, Zhao C, Chen X, Zhang L, Zhou X, Rubera I, Tauc M, Zhuo JL (2021) Proximal tubule-specific deletion of angiotensin II type 1a receptors in the kidney attenuates circulating and intratubular angiotensin II-induced hypertension in PT-Agtr1a(-/-) mice. Hypertension 77:1285–1298. https://doi.org/10.1161/HYPERTENSIONAHA.120.16336

    Article  CAS  PubMed  Google Scholar 

  39. Li XC, Soleimani M, Zhu D, Rubera I, Tauc M, Zheng X, Zhang J, Chen X, Zhuo JL (2018) Proximal tubule-specific deletion of the NHE3 (Na(+)/H(+) Exchanger 3) promotes the pressure-natriuresis response and lowers blood pressure in mice. Hypertension 72:1328–1336. https://doi.org/10.1161/HYPERTENSIONAHA.118.10884

    Article  CAS  PubMed  Google Scholar 

  40. Li XC, Zhu D, Chen X, Zheng X, Zhao C, Zhang J, Soleimani M, Rubera I, Tauc M, Zhou X, Zhuo JL (2019) Proximal tubule-specific deletion of the NHE3 (Na(+)/H(+) exchanger 3) in the kidney attenuates ang II (angiotensin II)-induced hypertension in mice. Hypertension 74:526–535. https://doi.org/10.1161/HYPERTENSIONAHA.119.13094

    Article  CAS  PubMed  Google Scholar 

  41. Limbutara K, Chou CL, Knepper MA (2020) Quantitative proteomics of all 14 renal tubule segments in Rat. J Am Soc Nephrol 31:1255–1266. https://doi.org/10.1681/ASN.2020010071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lorenz JN, Schultheis PJ, Traynor T, Shull GE, Schnermann J (1999) Micropuncture analysis of single-nephron function in NHE3-deficient mice. Am J Physiol 277:F447–F453. https://doi.org/10.1152/ajprenal.1999.277.3.F447

    Article  CAS  PubMed  Google Scholar 

  43. Madison BB, Dunbar L, Qiao XT, Braunstein K, Braunstein E, Gumucio DL (2002) Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J Biol Chem 277:33275–33283. https://doi.org/10.1074/jbc.M204935200

    Article  CAS  PubMed  Google Scholar 

  44. Masuda T, Watanabe Y, Fukuda K, Watanabe M, Onishi A, Ohara K, Imai T, Koepsell H, Muto S, Vallon V, Nagata D (2018) Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat. Am J Physiol Renal Physiol 315:F653–F664. https://doi.org/10.1152/ajprenal.00143.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muller T, Rasool I, Heinz-Erian P, Mildenberger E, Hulstrunk C, Muller A, Michaud L, Koot BG, Ballauff A, Vodopiutz J, Rosipal S, Petersen BS, Franke A, Fuchs I, Witt H, Zoller H, Janecke AR, Visweswariah SS (2016) Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C. Gut 65:1306–1313. https://doi.org/10.1136/gutjnl-2015-309441

    Article  CAS  PubMed  Google Scholar 

  46. Onishi A, Fu Y, Darshi M, Crespo-Masip M, Huang W, Song P, Patel R, Kim YC, Nespoux J, Freeman B, Soleimani M, Thomson S, Sharma K, Vallon V (2019) Effect of renal tubule-specific knockdown of the Na(+)/H(+) exchanger NHE3 in Akita diabetic mice. Am J Physiol Renal Physiol 317:F419–F434. https://doi.org/10.1152/ajprenal.00497.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, Song P, Freeman B, Kim YC, Soleimani M, Sharma K, Thomson SC, Vallon V (2020) A role for tubular Na(+)/H(+) exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol 319:F712–F728. https://doi.org/10.1152/ajprenal.00264.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Packialakshmi B, Stewart IJ, Burmeister DM, Feng Y, McDaniel DP, Chung KK, Zhou X (2022) Tourniquet-induced lower limb ischemia/reperfusion reduces mitochondrial function by decreasing mitochondrial biogenesis in acute kidney injury in mice. Physiol Rep 10:e15181. https://doi.org/10.14814/phy2.15181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Packialakshmi B, Stewart IJ, Burmeister DM, Zhou X, Chung KK, Li XC, Soleimani M, Zhuo JL, MacMillan-Crow LA (2022) Inhibition of Na-H exchanger 3 ameliorates lower limb ischemia/reperfusion-induced acute kidney injury through preservation of mitochondrial biogenesis in mice. FASEB J 36. https://doi.org/10.1096/fasebj.2022.36.S1.R2760

  50. Pedersen SF, Counillon L (2019) The SLC9A-C mammalian Na(+)/H(+) exchanger family: molecules, mechanisms, and physiology. Physiol Rev 99:2015–2113. https://doi.org/10.1152/physrev.00028.2018

    Article  CAS  PubMed  Google Scholar 

  51. Pergola PE, Rosenbaum DP, Yang Y, Chertow GM (2021) A randomized trial of tenapanor and phosphate binders as a dual-mechanism treatment for hyperphosphatemia in patients on maintenance dialysis (AMPLIFY). J Am Soc Nephrol 32:1465–1473. https://doi.org/10.1681/ASN.2020101398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Peritore-Galve FC, Kaji I, Smith A, Walker LM, Shupe JA, Washington MK, Algood HMS, Dudeja PK, Goldenring JR, Lacy DB (2023) Increased intestinal permeability and downregulation of absorptive ion transporters Nhe3, Dra, and Sglt1 contribute to diarrhea during Clostridioides difficile infection. Gut Microbes 15:2225841. https://doi.org/10.1080/19490976.2023.2225841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pessoa TD, Campos LC, Carraro-Lacroix L, Girardi AC, Malnic G (2014) Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J Am Soc Nephrol 25:2028–2039. https://doi.org/10.1681/ASN.2013060588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Poll BG, Chen L, Chou CL, Raghuram V, Knepper MA (2021) Landscape of GPCR expression along the mouse nephron. Am J Physiol Renal Physiol 321:F50–F68. https://doi.org/10.1152/ajprenal.00077.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Poulsen SB, Fenton RA, Rieg T (2015) Sodium-glucose cotransport. Curr Opin Nephrol Hypertens 24:463–469. https://doi.org/10.1097/MNH.0000000000000152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Prasad H, Visweswariah SS (2021) Impaired intestinal sodium transport in inflammatory bowel disease: from the passenger to the driver’s seat. Cell Mol Gastroenterol Hepatol 12:277–292. https://doi.org/10.1016/j.jcmgh.2021.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Preisig PA, Ives HE, Cragoe EJ Jr, Alpern RJ, Rector FC Jr (1987) Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest 80:970–978. https://doi.org/10.1172/JCI113190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rao VS, Ivey-Miranda JB, Cox ZL, Moreno-Villagomez J, Maulion C, Bellumkonda L, Chang J, Field MP, Wiederin DR, Butler J, Collins SP, Turner JM, Wilson FP, Inzucchi SE, Wilcox CS, Ellison DH, Testani JM (2023) Empagliflozin in heart failure: regional nephron sodium handling effects. J Am Soc Nephrol. https://doi.org/10.1681/ASN.0000000000000269

  59. Rieg T, Gerasimova M, Murray F, Masuda T, Tang T, Rose M, Drucker DJ, Vallon V (2012) Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. Am J Physiol Renal Physiol 303:F963–F971. https://doi.org/10.1152/ajprenal.00259.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rieg T, Schnermann J, Vallon V (2007) Adenosine A1 receptors determine effects of caffeine on total fluid intake but not caffeine appetite. Eur J Pharmacol 555:174–177. https://doi.org/10.1016/j.ejphar.2006.10.039

    Article  CAS  PubMed  Google Scholar 

  61. Rieg T, Steigele H, Schnermann J, Richter K, Osswald H, Vallon V (2005) Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J Pharmacol Exp Ther 313:403–409. https://doi.org/10.1124/jpet.104.080432

    Article  CAS  PubMed  Google Scholar 

  62. Rieg T, Vallon V (2018) Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61:2079–2086. https://doi.org/10.1007/s00125-018-4654-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, Riddle TM, Duffy JJ, Doetschman T, Wang T, Giebisch G, Aronson PS, Lorenz JN, Shull GE (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19:282–285. https://doi.org/10.1038/969

    Article  CAS  PubMed  Google Scholar 

  64. Shao X, Somlo S, Igarashi P (2002) Epithelial-specific Cre/lox recombination in the develo** kidney and genitourinary tract. J Am Soc Nephrol 13:1837–1846. https://doi.org/10.1097/01.asn.0000016444.90348.50

    Article  CAS  PubMed  Google Scholar 

  65. Solocinski K, Richards J, All S, Cheng KY, Khundmiri SJ, Gumz ML (2015) Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. Am J Physiol Renal Physiol 309:F933–F942. https://doi.org/10.1152/ajprenal.00197.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Subramanya SB, Rajendran VM, Srinivasan P, Nanda Kumar NS, Ramakrishna BS, Binder HJ (2007) Differential regulation of cholera toxin-inhibited Na-H exchange isoforms by butyrate in rat ileum. Am J Physiol Gastrointest Liver Physiol 293:G857–G863. https://doi.org/10.1152/ajpgi.00462.2006

    Article  CAS  PubMed  Google Scholar 

  67. Tan Q, di Stefano G, Tan X, Renjie X, Romermann D, Talbot SR, Seidler UE (2021) Inhibition of Na(+) /H(+) exchanger isoform 3 improves gut fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator-deficient and F508del mutant mice. Br J Pharmacol 178:1018–1036. https://doi.org/10.1111/bph.15323

    Article  CAS  PubMed  Google Scholar 

  68. Tan X, Kini A, Romermann D, Seidler U (2022) The NHE3 inhibitor tenapanor prevents intestinal obstructions in CFTR-deleted mice. Int J Mol Sci 23. https://doi.org/10.3390/ijms23179993

  69. Thomas L, Xue J, Dominguez Rieg JA, Rieg T (2019) Contribution of NHE3 and dietary phosphate to lithium pharmacokinetics. Eur J Pharm Sci 128:1–7. https://doi.org/10.1016/j.ejps.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  70. Uwai Y, Tsuduki M, Kawasaki T, Nabekura T (2019) Effect of acetazolamide on lithium reabsorption and lithium-induced GSK3beta phosphorylation in rat kidney. Pharmazie 74:611–613. https://doi.org/10.1691/ph.2019.9060

    Article  CAS  PubMed  Google Scholar 

  71. Vallon V, Schwark JR, Richter K, Hropot M (2000) Role of Na(+)/H(+) exchanger NHE3 in nephron function: micropuncture studies with S3226, an inhibitor of NHE3. Am J Physiol Renal Physiol 278:F375–F379. https://doi.org/10.1152/ajprenal.2000.278.3.F375

    Article  CAS  PubMed  Google Scholar 

  72. Vallon V, Verma S (2021) Effects of SGLT2 Inhibitors on kidney and cardiovascular function. Annu Rev Physiol 83:503–528. https://doi.org/10.1146/annurev-physiol-031620-095920

    Article  CAS  PubMed  Google Scholar 

  73. Veiras LC, Girardi ACC, Curry J, Pei L, Ralph DL, Tran A, Castelo-Branco RC, Pastor-Soler N, Arranz CT, Yu ASL, McDonough AA (2017) Sexual dimorphic pattern of renal transporters and electrolyte homeostasis. J Am Soc Nephrol 28:3504–3517. https://doi.org/10.1681/ASN.2017030295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang T, Hropot M, Aronson PS, Giebisch G (2001) Role of NHE isoforms in mediating bicarbonate reabsorption along the nephron. Am J Physiol Renal Physiol 281:F1117–F1122. https://doi.org/10.1152/ajprenal.2001.281.6.F1117

    Article  CAS  PubMed  Google Scholar 

  75. Wang T, Yang CL, Abbiati T, Schultheis PJ, Shull GE, Giebisch G, Aronson PS (1999) Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol 277:F298–F302. https://doi.org/10.1152/ajprenal.1999.277.2.F298

    Article  CAS  PubMed  Google Scholar 

  76. Wang X, Yu X, Gavardinas K, Dey A, Zhang HY, Porter G, Porras L, Yu L, Guo H, Reidy CA, Haas JV, Xu Y, Kowala MC, Jadhav PK, Wetterau JR (2024) Effect of an NHE3 inhibitor in combination with an NPT2b inhibitor on gastrointestinal phosphate absorption in Rodent models. PLoS One 19:e0292091. https://doi.org/10.1371/journal.pone.0292091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Welch WJ (2015) Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption. Acta Physiol (Oxf) 213:242–248. https://doi.org/10.1111/apha.12413

    Article  CAS  PubMed  Google Scholar 

  78. Xu Z, Wang Y, Feng Y, Yang M, Shi G, Xuan Z, Xu F (2023) Characteristics of sodium and water retention in rats with nephrotic syndrome induced by puromycin aminonucleoside. BMC Nephrol 24:309. https://doi.org/10.1186/s12882-023-03367-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xue J, Dominguez Rieg JA, Thomas L, White JR, Rieg T (2022) Intestine-specific NHE3 deletion in adulthood causes microbial dysbiosis. Front Cell Infect Microbiol 12:896309. https://doi.org/10.3389/fcimb.2022.896309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xue J, Thomas L, Dominguez Rieg JA, Fenton RA, Rieg T (2022) NHE3 in the thick ascending limb is required for sustained but not acute furosemide-induced urinary acidification. Am J Physiol Renal Physiol 323:F141–F155. https://doi.org/10.1152/ajprenal.00013.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xue J, Thomas L, Murali SK, Levi M, Fenton RA, Dominguez Rieg JA, Rieg T (2022) Enhanced phosphate absorption in intestinal epithelial cell-specific NHE3 knockout mice. Acta Physiol (Oxf) 234:e13756. https://doi.org/10.1111/apha.13756

    Article  CAS  PubMed  Google Scholar 

  82. Xue J, Thomas L, Tahmasbi M, Valdez A, Dominguez Rieg JA, Fenton RA, Rieg T (2020) An inducible intestinal epithelial cell-specific NHE3 knockout mouse model mimicking congenital sodium diarrhea. Clin Sci (Lond) 134:941–953. https://doi.org/10.1042/CS20200065

    Article  CAS  PubMed  Google Scholar 

  83. Yu Y, Ren Z, **e A, Jia Y, Xue Y, Wang P, Ji D, Wang X (2022) Assessment of urinary exosomal NHE3 as a biomarker of acute kidney injury. Diagnostics (Basel) 12. https://doi.org/10.3390/diagnostics12112634

  84. Zachos NC, Vaughan H, Sarker R, Est-Witte S, Chakraborty M, Baetz NW, Yu H, Yarov-Yarovoy V, McNamara G, Green JJ, Tse CM, Donowitz M (2023) A novel peptide prevents enterotoxin- and inflammation-induced intestinal fluid secretion by stimulating sodium-hydrogen exchanger 3 activity. Gastroenterology 165(986-998):e911. https://doi.org/10.1053/j.gastro.2023.06.028

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a VA Merit Review Award IBX004968A (to T.R.). Additional support was provided by a Pilot Project from the USF Microbiomes Institute (to T.R. and J.D.R). The contents do not represent the views of the US Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

J.D.R. and T.R. wrote the manuscript and prepared all figures. Both authors reviewed the manuscript.

Corresponding author

Correspondence to Timo Rieg.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Physiology of systemic and cellular pH regulation in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguez Rieg, J.A., Rieg, T. New functions and roles of the Na+-H+-exchanger NHE3. Pflugers Arch - Eur J Physiol 476, 505–516 (2024). https://doi.org/10.1007/s00424-024-02938-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-024-02938-9

Keywords

Navigation