Log in

Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

This review is focused on gender differences in cardiac remodeling secondary to sustained increases in cardiac volume (VO) and generated pressure (PO). Estrogen has been shown to favorably alter the course of VO-induced remodeling. That is, the VO-induced increased extracellular matrix proteolytic activity and mast cell degranulation responsible for the adverse cardiac remodeling in males and ovariectomized rodents do not occur in intact premenopausal females. While less is known regarding the mechanisms responsible for female cardioprotection in PO-induced stress, gender differences in remodeling have been reported indicating the ability of premenopausal females to adequately compensate. In view of the fact that, in male mice with PO, mast cells have been shown to play a role in the adverse remodeling suggests favorable estrogen modification of mast cell phenotype may also be responsible for cardioprotection in females with PO. Thus, while evidence is accumulating regarding premenopausal females being cardioprotected, there remains the need for in-depth studies to identify critical downstream molecular targets that are under the regulation of estrogen and relevant to cardiac remodeling. Such studies would result in the development of therapy which provides cardioprotection while avoiding the adverse effects of systemic estrogen delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anversa P, Melissari M, Beghi C, Olivetti G (1984) Structural compensatory mechanisms in rat heart in early spontaneous hypertension. Am J Physiol 246:H739–H746

    PubMed  CAS  Google Scholar 

  2. Badenhorst D, Maseko M, Tsotetsi OJ, Naidoo A, Brooksbank R, Norton GR, Woodiwiss AJ (2003) Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc Res 57:632–641

    Article  PubMed  CAS  Google Scholar 

  3. Baicu CF, Stroud JD, Livesay VA, Hapke E, Holder J, Spinale FG, Zile MR (2003) Changes in extracellular collagen matrix alter myocardial systolic performance. Am J Physiol Heart Circ Physiol 284:H122–H132

    PubMed  CAS  Google Scholar 

  4. Bhuiyan MS, Shioda N, Fukunaga K (2007) Ovariectomy augments pressure overload-induced hypertrophy associated with changes in Akt and nitric oxide synthase signaling pathways in female rats. Am J Physiol Endocrinol Metab 293:E1606–E1614

    Article  PubMed  CAS  Google Scholar 

  5. Bobik A (2006) Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vasc Biol 26:1712–1720

    Article  PubMed  CAS  Google Scholar 

  6. Bouzeghrane F, Mercure C, Reudelhuber TL, Thibault G (2004) Alpha8beta1 integrin is upregulated in myofibroblasts of fibrotic and scarring myocardium. J Mol Cell Cardiol 36:343–353

    Article  PubMed  CAS  Google Scholar 

  7. Brower GL, Chancey AL, Thanigaraj S, Matsubara BB, Janicki JS (2002) Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol 283:H518–H525

    CAS  Google Scholar 

  8. Brower GL, Henegar JR, Janicki JS (1996) Temporal evaluation of left ventricular remodeling and function in rats with chronic volume overload. Am J Physiol 271:H2071–H2078

    PubMed  CAS  Google Scholar 

  9. Brower GL, Janicki JS (2005) Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. J Cardiac Fail 11:548–556

    Article  CAS  Google Scholar 

  10. Brower GL, Gardner JD, Janicki JS (2003) Gender mediated cardiac protection from adverse ventricular remodeling is abolished by ovariectomy. Mol Cell Biochem 251:89–95

    Article  PubMed  CAS  Google Scholar 

  11. Brower GL, Janicki JS (2001) Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol 280:H674–H683

    PubMed  CAS  Google Scholar 

  12. Caughey GH, Raymond WW, Wolters PJ (2000) Angiotensin II generation by mast cell α- and β-chymases. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology 1480:245–257

    Article  CAS  Google Scholar 

  13. Chan V, Fenning A, Levick SP, Loch D, Chunduri P, Iyer A, Teo YL, Hoey A, Wilson K, Burstow D, Brown L (2011) Cardiovascular changes during maturation and ageing in male and female spontaneously hypertensive rats. J Cardiovasc Pharmacol 57:469–478

    Article  PubMed  CAS  Google Scholar 

  14. Chancey AL, Brower GL, Peterson JT, Janicki JS (2002) Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 105:1983–1988

    Article  PubMed  CAS  Google Scholar 

  15. Chancey AL, Gardner JD, Murray DB, Brower GL, Janicki JS (2005) Modulation of cardiac mast cell-mediated extracellular matrix degradation by estrogen. Am J Physiol Heart Circ Physiol 289:H316–H321

    Article  PubMed  CAS  Google Scholar 

  16. Collier P, Watson CJ, van Es MH, Phelan D, McGorrian C, Tolan M, Ledwidge MT, McDonald KM, Baugh JA (2012) Getting to the heart of cardiac remodeling; how collagen subtypes may contribute to phenotype. J Mol Cell Cardiol 52:148–153

    Article  PubMed  CAS  Google Scholar 

  17. Combs AB, Acosta D (1990) Toxic mechanisms of the heart: a review. Toxicol Pathol 18:583–596

    PubMed  CAS  Google Scholar 

  18. d'Ortho MP, Will H, Atkinson S, Butler G, Messent A, Gavrilovic J, Smith B, Timpl R, Zardi L, Murphy G (1997) Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem 250:751–757

    Article  PubMed  Google Scholar 

  19. Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF, Humphries MJ, Kielty CM (2005) Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. J Biol Chem 280:18871–18880

    Article  PubMed  CAS  Google Scholar 

  20. Ding B, Price RL, Goldsmith EC, Borg TK, Yan X, Douglas PS, Weinberg EO, Bartunek J, Thielen T, Didenko VV, Lorell BH (2000) Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation 101:2854–2862

    Article  PubMed  CAS  Google Scholar 

  21. Du Y, Plante E, Janicki JS, Brower GL (2010) Temporal evaluation of cardiac myocyte hypertrophy and hyperplasia in male rats secondary to chronic volume overload. Am J Pathol 177:1155–1163

    Article  PubMed  Google Scholar 

  22. Dubey RK, Gillespie DG, Jackson EK, Keller PJ (1998) 17Beta-estradiol, its metabolites, and progesterone inhibit cardiac fibroblast growth. Hypertension 31:522–528

    Article  PubMed  CAS  Google Scholar 

  23. Feng XH, Derynck R (2005) Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  PubMed  CAS  Google Scholar 

  24. Fliegner D, Schubert C, Penkalla A, Witt H, Kararigas G, Dworatzek E, Staub E, Martus P, Ruiz NP, Kintscher U, Gustafsson JA, Regitz-Zagrosek V (2010) Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload. Am J Physiol Regul Integr Comp Physiol 298:R1597–R1606

    Article  PubMed  CAS  Google Scholar 

  25. Gardner JD, Murray DB, Voloshenyuk TG, Brower GL, Bradley JM, Janicki JS (2010) Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts. Am J Physiol Heart Circ Physiol 298:H497–H504

    Article  PubMed  CAS  Google Scholar 

  26. Gardner JD, Brower GL, Janicki JS (2002) Gender differences in cardiac remodeling secondary to chronic volume overload. J Card Fail 8:101–107

    Article  PubMed  Google Scholar 

  27. Gardner JD, Brower GL, Voloshenyuk TG, Janicki JS (2008) Cardioprotection in female rats subjected to chronic volume overload: synergistic interaction of estrogen and phytoestrogens. Am J Physiol Heart Circ Physiol 294:H198–H204

    Article  PubMed  CAS  Google Scholar 

  28. Ghosh AK (2002) Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med 227:301–314

    CAS  Google Scholar 

  29. Gilles S, Zahler S, Welsch U, Sommerhoff CP, Becker BF (2003) Release of TNF-α during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers. Cardiovasc Res 60:608–616

    Article  PubMed  CAS  Google Scholar 

  30. Grandi AM, Venco A, Barzizza F, Scalise F, Pantaleo P, Finardi G (1992) Influence of age and sex on left ventricular anatomy and function in normals. Cardiology 81:8–13

    Article  PubMed  CAS  Google Scholar 

  31. Gruber BL, Marchese MJ, Suzuki K, Schwartz LB, Okada Y, Nagase H, Ramamurthy NS (1989) Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J Clin Invest 84:1657–1662

    Article  PubMed  CAS  Google Scholar 

  32. Hara M, Ono K, Hwang MW, Iwasaki A, Okada M, Nakatani K, Sasayama S, Matsumori A (2002) Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 195:375–381

    Article  PubMed  CAS  Google Scholar 

  33. Heymans S, Schroen B, Vermeersch P, Milting H, Gao F, Kassner A, Gillijns H, Herijgers P, Flameng W, Carmeliet P, Van de WF, Pinto YM, Janssens S (2005) Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 112:1136–1144

    Article  PubMed  CAS  Google Scholar 

  34. Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, Vittinghoff E (1998) Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. Jama 280:605–613

    Article  PubMed  CAS  Google Scholar 

  35. Janicki JS, Matsubara BB (1994) Myocardial collagen and left ventricular diastolic dysfunction. In: Gaasch WH, LeWinter MM (eds) Left ventricular diastolic dysfunction. Lea & Febiger, Philadelphia, pp 125–140

    Google Scholar 

  36. Janicki JS, Brower GL, Gardner JD, Forman MF, Stewart J, Murray DB, Chancey AL (2006) Cardiac mast cell regulation of matrix metalloproteinase-related ventricular remodeling in chronic pressure or volume overload. Cardiovasc Res 69:657–665

    Article  PubMed  CAS  Google Scholar 

  37. Jobe LJ, Melendez GC, Levick SP, Du Y, Brower GL, Janicki JS (2009) TNF-α inhibition attenuates adverse myocardial remodeling in a rat model of volume overload. Am J Physiol Heart Circ Physiol 297:H1462–H1468

    Article  PubMed  CAS  Google Scholar 

  38. Kanellakis P, Ditiatkovski M, Kostolias G, Bobik A (2012) A pro-fibrotic role for interleukin-4 in cardiac pressure overload. Cardiovasc Res 95:77–85

    Article  PubMed  CAS  Google Scholar 

  39. Koli K, Saharinen J, Hyytiainen M, Penttinen C, Keski-Oja J (2001) Latency, activation, and binding proteins of TGF-beta. Microsc Res Tech 52:354–362

    Article  PubMed  CAS  Google Scholar 

  40. Lam CS, Carson PE, Anand IS, Rector TS, Kuskowski M, Komajda M, McKelvie RS, McMurray JJ, Zile MR, Massie BM, Kitzman DW (2012) Sex differences in clinical characteristics and outcomes in elderly patients with heart failure and preserved ejection fraction: the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail 5:571–578

    Article  PubMed  CAS  Google Scholar 

  41. Lees M, Taylor DJ, Woolley DE (1994) Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. Eur J Biochem 223:171–177

    Article  PubMed  CAS  Google Scholar 

  42. Levick SP, McLarty JL, Murray DB, Freeman RM, Carver WE, Brower GL (2009) Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension 53:1041–1047

    Article  PubMed  CAS  Google Scholar 

  43. Levick SP, Gardner JD, Holland M, Hauer-Jensen M, Janicki JS, Brower GL (2008) Protection from adverse myocardial remodeling secondary to chronic volume overload in mast cell deficient rats. J Mol Cell Cardiol 45:56–61

    Article  PubMed  CAS  Google Scholar 

  44. Li J, Lu H, Plante E, Melendez GC, Levick SP, Janicki JS (2012) Stem cell factor is responsible for the rapid response in mature mast cell density in the acutely stressed heart. J Mol Cell Cardiol 53:469–474

    Article  PubMed  CAS  Google Scholar 

  45. Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Develo** and established hypertrophy. Circ Res 69:52–58

    Article  PubMed  CAS  Google Scholar 

  46. Liu Z, Hilbelink DR, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 2. Long-term effects. Circ Res 69:59–65

    Article  PubMed  CAS  Google Scholar 

  47. Lu H, Melendez GC, Levick SP, Janicki JS (2012) Prevention of adverse cardiac remodeling to volume overload in female rats is the result of an estrogen-altered mast cell phenotype. Am J Physiol Heart Circ Physiol 302:H811–H817

    Article  PubMed  CAS  Google Scholar 

  48. Mahmoodzadeh S, Dworatzek E, Fritschka S, Pham TH, Regitz-Zagrosek V (2010) 17beta-Estradiol inhibits matrix metalloproteinase-2 transcription via MAP kinase in fibroblasts. Cardiovasc Res 85:719–728

    Article  PubMed  CAS  Google Scholar 

  49. McLarty JL, Melendez GC, Brower GL, Janicki JS, Levick SP (2011) Tryptase/protease-activated receptor 2 interactions induce selective mitogen-activated protein kinase signaling and collagen synthesis by cardiac fibroblasts. Hypertension 58:264–270

    Article  PubMed  CAS  Google Scholar 

  50. Melendez GC, Li J, Law BA, Janicki JS, Supowit SC, Levick SP (2011) Substance P induces adverse myocardial remodeling via a mechanism involving cardiac mast cells. Cardiovasc Res 92:420–429

    Article  PubMed  CAS  Google Scholar 

  51. Melendez GC, Voloshenyuk TG, McLarty JL, Levick SP, Brower GL (2010) Oxidative stress mediated cardiac mast cell degranulation. Toxicol Environ Chem 92:1293–1301

    Article  CAS  Google Scholar 

  52. Murray DB, Gardner JD, Brower GL, Janicki JS (2004) Endothelin-1 mediates cardiac mast cell degranulation, matrix metalloproteinase activation, and myocardial remodeling in rats. Am J Physiol Heart Circ Physiol 287:H2295–H2299

    Article  PubMed  CAS  Google Scholar 

  53. Murray DB, Gardner JD, Brower GL, Janicki JS (2008) Effects of nonselective endothelin-1 receptor antagonism on cardiac mast cell-mediated ventricular remodeling in rats. Am J Physiol Heart Circ Physiol 294:H1251–H1257

    Article  PubMed  CAS  Google Scholar 

  54. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    Article  PubMed  CAS  Google Scholar 

  55. Norton GR, Tsotetsi J, Trifunovic B, Hartford C, Candy GP, Woodiwiss AJ (1997) Myocardial stiffness is attributed to alterations in cross-linked collagen rather than total collagen or phenotypes in spontaneously hypertensive rats. Circulation 96:1991–1998

    Article  PubMed  CAS  Google Scholar 

  56. Panizo A, Mindan FJ, Galindo MF, Cenarruzabeitia E, Hernandez M, Diez J (1995) Are mast cells involved in hypertensive heart disease? J Hypertens 13:1201–1208

    Article  PubMed  CAS  Google Scholar 

  57. Pedram A, Razandi M, O'Mahony F, Lubahn D, Levin ER (2010) Estrogen receptor-beta prevents cardiac fibrosis. Mol Endocrinol 24:2152–2165

    Article  PubMed  CAS  Google Scholar 

  58. Pelzer T, Neumann M, de Jager T, Jazbutyte V, Neyses L (2001) Estrogen effects in the myocardium: inhibition of NF-kappaB DNA binding by estrogen receptor-alpha and -beta. Biochem Biophys Res Commun 286:1153–1157

    Article  PubMed  CAS  Google Scholar 

  59. Peterson JT (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103:2303–2309

    Article  PubMed  CAS  Google Scholar 

  60. Petrov G, Regitz-Zagrosek V, Lehmkuhl E, Krabatsch T, Dunkel A, Dandel M, Dworatzek E, Mahmoodzadeh S, Schubert C, Becher E, Hampl H, Hetzer R (2010) Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation 122:S23–S28

    Article  PubMed  Google Scholar 

  61. Qiu Y, Liao R, Zhang X (2009) Intervention of cardiomyocyte death based on the impedance-sensing technique of monitoring cell adhesion. Conf Proc IEEE Eng Med Biol Soc 2009:4457–4460

    PubMed  Google Scholar 

  62. Rifkin DB (2005) Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem 280:7409–7412

    Article  PubMed  CAS  Google Scholar 

  63. Ropero AB, Eghbali M, Minosyan TY, Tang G, Toro L, Stefani E (2006) Heart estrogen receptor alpha: distinct membrane and nuclear distribution patterns and regulation by estrogen. J Mol Cell Cardiol 41:496–510

    Article  PubMed  CAS  Google Scholar 

  64. Ross RS (2002) The extracellular connections: the role of integrins in myocardial remodeling. J Card Fail 8:S326–S331

    Article  PubMed  CAS  Google Scholar 

  65. Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119

    Article  PubMed  CAS  Google Scholar 

  66. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288:321–333

    Article  PubMed  CAS  Google Scholar 

  67. Ruddy JM, Jones JA, Stroud RE, Mukherjee R, Spinale FG, Ikonomidis JS (2009) Differential effects of mechanical and biological stimuli on matrix metalloproteinase promoter activation in the thoracic aorta. Circulation 120:S262–S268

    Article  PubMed  CAS  Google Scholar 

  68. Salpeter SR, Walsh JM, Greyber E, Ormiston TM, Salpeter EE (2004) Mortality associated with hormone replacement therapy in younger and older women: a meta-analysis. J Gen Intern Med 19:791–804

    Article  PubMed  Google Scholar 

  69. Schierbeck LL, Rejnmark L, Tofteng CL, Stilgren L, Eiken P, Mosekilde L, Kober L, Jensen JE (2012) Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. BMJ 345:e6409

    Article  PubMed  Google Scholar 

  70. Seguin CA, Pilliar RM, Madri JA, Kandel RA (2008) TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine 33:356–365

    Article  PubMed  Google Scholar 

  71. Shiota N, Rysa J, Kovanen PT, Ruskoaha H, Kokkonen JO, Lindstedt KA (2003) A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J Hypertens 21:1823–1825

    Article  Google Scholar 

  72. Simon JA (2012) What's new in hormone replacement therapy: focus on transdermal estradiol and micronized progesterone. Climacteric 15(Suppl 1):3–10

    Article  PubMed  CAS  Google Scholar 

  73. Skavdahl M, Steenbergen C, Clark J, Myers P, Demianenko T, Mao L, Rockman HA, Korach KS, Murphy E (2005) Estrogen receptor-beta mediates male–female differences in the development of pressure overload hypertrophy. Am J Physiol Heart Circ Physiol 288:H469–H476

    Article  PubMed  CAS  Google Scholar 

  74. Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 85:364–376

    Article  PubMed  CAS  Google Scholar 

  75. Staufer BL, Leinwand LA (2004) Sex differences in cardiac muscle and remodeling. Adv Molec Cell Biol 34:131–145

    Article  Google Scholar 

  76. Stewart JA Jr, Cashatt DO, Borck AC, Brown JE, Carver WE (2006) 17beta-estradiol modulation of angiotensin II-stimulated response in cardiac fibroblasts. J Mol Cell Cardiol 41:97–107

    Article  PubMed  CAS  Google Scholar 

  77. Stewart JA Jr, Massey EP, Fix C, Zhu J, Goldsmith EC, Carver W (2010) Temporal alterations in cardiac fibroblast function following induction of pressure overload. Cell Tissue Res 340:117–126

    Article  PubMed  Google Scholar 

  78. Tamura T, Said S, Gerdes AM (1999) Gender-related differences in myocyte remodeling in progression to heart failure. Hypertension 33:676–680

    Article  PubMed  CAS  Google Scholar 

  79. Tchougounova E, Lundequist A, Fajardo I, Winberg JO, Abrink M, Pejler G (2005) A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 280:9291–9296

    Article  PubMed  CAS  Google Scholar 

  80. van Eickels M, Grohe C, Cleutjens JP, Janssen BJ, Wellens HJ, Doevendans PA (2001) 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 104:1419–1423

    Article  PubMed  Google Scholar 

  81. Vickers MR, MacLennan AH, Lawton B, Ford D, Martin J, Meredith SK, DeStavola BL, Rose S, Dowell A, Wilkes HC, Darbyshire JH, Meade TW (2007) Main morbidities recorded in the women's international study of long duration oestrogen after menopause (WISDOM): a randomised controlled trial of hormone replacement therapy in postmenopausal women. BMJ 335:239

    Article  PubMed  CAS  Google Scholar 

  82. Voloshenyuk TG, Gardner JD (2010) Estrogen improves TIMP-MMP balance and collagen distribution in volume-overloaded hearts of ovariectomized females. Am J Physiol Regul Integr Comp Physiol 299:R683–R693

    Article  PubMed  CAS  Google Scholar 

  83. Wang X, Li F, Gerdes AM (1999) Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: I. Regional hemodynamics and myocyte remodeling. J Mol Cell Cardiol 31:307–317

    Article  PubMed  CAS  Google Scholar 

  84. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI (1988) Collegen remodeling of the pressure overloaded, hypertrophied nonhuman primate myocardium. Circ Res 62:757–765

    Article  PubMed  CAS  Google Scholar 

  85. Weber KT, Brilla CG, Janicki JS (1993) Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res 27:341–348

    Article  PubMed  CAS  Google Scholar 

  86. Weinberg EO, Thienelt CD, Katz SE, Bartunek J, Tajima M, Rohrbach S, Douglas PS, Lorell BH (1999) Gender differences in molecular remodeling in pressure overload hypertrophy. J Am Coll Cardiol 34:264–273

    Article  PubMed  CAS  Google Scholar 

  87. Yang YN, Wang F, Zhou W, Wu ZQ, **ng YQ (2012) TNF-alpha stimulates MMP-2 and MMP-9 activities in human corneal epithelial cells via the activation of FAK/ERK signaling. Ophthalmic Res 48:165–170

    Article  PubMed  CAS  Google Scholar 

  88. Yarbrough WM, Mukherjee R, Stroud RE, Rivers WT, Oelsen JM, Dixon JA, Eckhouse SR, Ikonomidis JS, Zile MR, Spinale FG (2012) Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature. J Thorac Cardiovasc Surg 143:215–223

    Article  PubMed  Google Scholar 

  89. Zaitsu M, Narita S, Lambert KC, Grady JJ, Estes DM, Curran EM, Brooks EG, Watson CS, Goldblum RM, Midoro-Horiuti T (2007) Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Mol Immunol 44:1977–1985

    Article  PubMed  CAS  Google Scholar 

  90. Zile MR, Baicu CF, Stroud RE, Van Laer A, Arroyo J, Mukherjee R, Jones JA, Spinale FG (2012) Pressure overload-dependent membrane type 1-matrix metalloproteinase induction: relationship to LV remodeling and fibrosis. Am J Physiol Heart Circ Physiol 302:H1429–H1437

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by grants from NIH and VA (to JSJ: HL-59981, HL-62228, HL-089483; to FGS: HL057952, HL089944, HL095608, and a Merit Award from the Veterans’ Affairs Health Administration; and to SPL: HL-093215)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Janicki.

Additional information

This article is published as part of the Special Issue on “Sex differences in health and disease: brain and heart connections”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janicki, J.S., Spinale, F.G. & Levick, S.P. Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase. Pflugers Arch - Eur J Physiol 465, 687–697 (2013). https://doi.org/10.1007/s00424-013-1229-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1229-9

Keywords

Navigation