Log in

Sleep restriction reduces voluntary isometric quadriceps strength through reduced neuromuscular efficiency, not impaired contractile performance

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Acute sleep restriction (SR) reduces strength through an unknown mechanism. Purpose: To determine how SR affects quadriceps contractile function and recruitment. Methods: Eighteen healthy subjects (9 M, 9F, age 23.8 ± 2.8y) underwent isometric (maximal and submaximal), isokinetic (300–60°·s−1), and interpolated twitch (ITT) assessment of knee extensors following 3d of adequate sleep (SA; 7–9 h·night−1), 3d of SR (5 h·night−1), and 7d of washout (WO; 7-9 h·night−1). Results: Compared to SA (227.9 ± 76.6Nm) and WO (228.19 ± 62.9Nm), MVIC was lesser following SR (209.9 ± 73.9Nm; p = 0.006) and this effect was greater for males (− 9.8 v. − 4.8%). There was no significant effect of sleep or sleep x speed interaction on peak isokinetic torque. Peak twitch torque was greater in the potentiated state, but no significant effect of sleep was noted. Males displayed greater potentiation of peak twitch torque (12 v. 7.5%) and rate of torque development (16.7 v. 8.2%) than females but this was not affected by sleep condition. ITT-assessed voluntary activation did not vary among sleep conditions (SA: 81.8 ± 13.1% v. SR: 84.4 ± 12.6% v. WO 84.9 ± 12.6%; p = 0.093). SR induced a leftward shift in Torque-EMG relationship at high torque output in both sexes. Compared to SA, females displayed greater y-intercept and lesser slope with SR and WO and males displayed lesser y-intercept and greater slope with SR and WO. Conclusions: Three nights of SR decreases voluntary isometric knee extensor strength, but not twitch contractile properties. Sex-specific differences in neuromuscular efficiency may explain the greater MVIC reduction in males following SR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available upon reasonable request from the corresponding author.

Abbreviations

ANOVA:

Analysis of Variance

ITT:

Interpolated Twitch

MPF:

Mean Power Frequency

MVIC:

Maximal Voluntary Isometric Contraction

NME:

Neuromuscular Efficiency

PAP:

Post Activation Potentiation

PTT:

Peak Twitch Torque

RR:

Relaxation Rate

RTD:

Rate of Torque Development

SA:

Sleep Adequate

sEMG:

Surface Electromyography

SR:

Sleep Restriction

WO:

Washout

References

  • Alkner BA, Tesch PA, Berg HE (2000) Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sports Exerc 32(2):459–463

    Article  CAS  PubMed  Google Scholar 

  • Arnal PJ, Lapole T, Erblang M et al (2016) Sleep extension before sleep loss: effects on performance and neuromuscular function. Med Sci Sports Exerc 48(8):1595–1603

    Article  PubMed  Google Scholar 

  • Bambaeichi E, Reilly T, Cable NT, Giacomoni M (2005) Influence of time of day and partial sleep loss on muscle strength in eumenorrheic females. Ergonomics 48(11–14):1499–1511

    Article  CAS  PubMed  Google Scholar 

  • Besomi M, Devecchi V, Falla D et al (2024) Consensus for experimental design in electromyography (CEDE) project: Checklist for reporting and critically appraising studies using EMG (CEDE-Check). J Electromyogr Kinesiol 76:102874

    Article  PubMed  Google Scholar 

  • Blazevich AJ, Babault N (2019) Post-activation potentiation versus post-activation performance enhancement in humans: historical perspective, underlying mechanisms, and current issues. Front Physiol. https://doi.org/10.3389/fphys.2019.01359

    Article  PubMed  PubMed Central  Google Scholar 

  • Brotherton EJ, Moseley SE, Langan-Evans C et al (2019) Effects of two nights partial sleep deprivation on an evening submaximal weightlifting performance; are 1 h powernaps useful on the day of competition? Chronobiol Int 36(3):407–426

    Article  PubMed  Google Scholar 

  • Bulbulian R, Heaney JH, Leake CN, Sucec AA, Sjoholm NT (1996) The effect of sleep deprivation and exercise load on isokinetic leg strength and endurance. Eur J Appl Physiol Occup Physiol 73(3–4):273–277

    Article  CAS  PubMed  Google Scholar 

  • Cappuccio FP, Cooper D, D’Elia L, Strazzullo P, Miller MA (2011) Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J 32(12):1484–1492

    Article  PubMed  Google Scholar 

  • Carpenter RS, Samaan MA, Clasey JL et al (2023) Association of vastus lateralis diffusion properties with in vivo quadriceps contractile function in premenopausal women. Scand J Med Sci Sports 33(3):213–223

    Article  PubMed  Google Scholar 

  • Cè E, Doria C, Roveda E et al (2020) Reduced neuromuscular performance in night shift orthopedic nurses: new insights from a combined electromyographic and force signals approach. Front Physiol. https://doi.org/10.3389/fphys.2020.00693

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou LW, Kesar TM, Binder-Macleod SA (2008) Using customized rate-coding and recruitment strategies to maintain forces during repetitive activation of human muscles. Phys Ther 88(3):363–375

    Article  PubMed  Google Scholar 

  • Clamann HP (1993) Motor unit recruitment and the gradation of muscle force. Phys Ther 73(12):830–843

    Article  CAS  PubMed  Google Scholar 

  • Craven J, McCartney D, Desbrow B et al (2022) Effects of acute sleep loss on physical performance: a systematic and meta-analytical review. Sports Med 52(11):2669–2690

    Article  PubMed  PubMed Central  Google Scholar 

  • Fullagar HHK, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T (2015) Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med 45(2):161–186

    Article  PubMed  Google Scholar 

  • Haizlip KM, Harrison BC, Leinwand LA (2015) Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology 30(1):30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2000) Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol 88(6):2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Han JL, Dinger MK (2009) Validity of a self-administered 3-day physical activity recall in young adults. Am J Health Educ 40(1):5–13

    Article  Google Scholar 

  • Hirshkowitz M, Whiton K, Albert SM et al (2015) National sleep foundation’s updated sleep duration recommendations: final report. Sleep Health 1(4):233–243

    Article  PubMed  Google Scholar 

  • Hodgson M, Docherty D, Robbins D (2005) Post-activation potentiation. Sports Med 35(7):585–595

    Article  PubMed  Google Scholar 

  • Jeon S, Sontag SA, Herda TJ, Trevino MA (2023) Chronic training status affects muscle excitation of the vastus lateralis during repeated contractions. Sports Med Health Sci 5(1):42–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan C, Allen EJ, Williams GN (2011) Effect of knee position on quadriceps muscle force steadiness and activation strategies. Muscle Nerve 43(4):563–573

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamon S, Morabito A, Arentson-Lantz E et al (2021) The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment. Physiol Rep. https://doi.org/10.14814/phy2.14660

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanza MB, Balshaw TG, Folland JP (2019) Explosive strength: effect of knee-joint angle on functional, neural, and intrinsic contractile properties. Eur J Appl Physiol 119(8):1735–1746

    Article  PubMed  PubMed Central  Google Scholar 

  • Legg SJ, Patton JF (1987) Effects of sustained manual work and partial sleep deprivation on muscular strength and endurance. Eur J Appl Physiol Occup Physiol 56(1):64–68

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ren Y, Wu Y, Zhao X (2019) Correlation between sleep duration and hypertension: a dose-response meta-analysis. J Hum Hypertens 33(3):218–228

    Article  PubMed  Google Scholar 

  • Liu TZ, Xu C, Rota M et al (2017) Sleep duration and risk of all-cause mortality: A flexible, non-linear, meta-regression of 40 prospective cohort studies. Sleep Med Rev 32:28–36

    Article  PubMed  Google Scholar 

  • Montgomery-Downs HE, Insana SP, Bond JA (2012) Movement toward a novel activity monitoring device. Sleep Breath 16(3):913–917

    Article  PubMed  Google Scholar 

  • Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58(3):115–130

    CAS  PubMed  Google Scholar 

  • Persechini A, Stull JT, Cooke R (1985) The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem 260(13):7951–7954

    Article  CAS  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35(4):486–495

    Article  PubMed  Google Scholar 

  • Reilly T, Piercy M (1994) The effect of partial sleep deprivation on weight-lifting performance. Ergonomics 37(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Royer N, Nosaka K, Doguet V, Jubeau M (2022) Neuromuscular responses to isometric, concentric and eccentric contractions of the knee extensors at the same torque-time integral. Eur J Appl Physiol 122(1):127–139

    Article  PubMed  Google Scholar 

  • Saner NJ, Lee MJC, Pitchford NW et al (2020) The effect of sleep restriction, with or without high-intensity interval exercise, on myofibrillar protein synthesis in healthy young men. J Physiol 598(8):1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Sarto F, Stashuk DW, Franchi MV et al (2022) Effects of short-term unloading and active recovery on human motor unit properties, neuromuscular junction transmission and transcriptomic profile. J Physiol 600(21):4731–4751

    Article  CAS  PubMed  Google Scholar 

  • Schmid SM, Hallschmid M, Schultes B (2015) The metabolic burden of sleep loss. Lancet Diabetes Endocrinol 3(1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Shield A, Zhou S (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 34(4):253–267

    Article  PubMed  Google Scholar 

  • Skein M, Duffield R, Edge J, Short MJ, Mündel T (2011) Intermittent-sprint performance and muscle glycogen after 30 h of sleep deprivation. Med Sci Sports Exerc 43(7):1301–1311

    Article  CAS  PubMed  Google Scholar 

  • Skurvydas A, Kazlauskaite D, Zlibinaite L et al (2021) Effects of two nights of sleep deprivation on executive function and central and peripheral fatigue during maximal voluntary contraction lasting 60s. Physiol Behav 229:113226

    Article  CAS  PubMed  Google Scholar 

  • Smyth C (1999) The pittsburgh sleep quality index (PSQI). J Gerontol Nurs. https://doi.org/10.1016/j.abb.2011.01.017

    Article  PubMed  Google Scholar 

  • Stull JT, Kamm KE, Vandenboom R (2011) Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch Biochem Biophys 510(2):120–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi L, Davis GM, Plyley M, Goode R, Shephard RJ (1985) Sleep deprivation, chronic exercise and muscular performance. Ergonomics 28(3):591–601

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL (2009) Point:Counterpoint: The interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107(1):354–355

    Article  PubMed  Google Scholar 

  • Thun E, Bjorvatn B, Flo E, Harris A, Pallesen S (2015) Sleep, circadian rhythms, and athletic performance. Sleep Med Rev 23:1–9

    Article  PubMed  Google Scholar 

  • Valli G, Sarto F, Casolo A et al (2023) Lower limb suspension induces threshold-specific alterations of motor units properties that are reversed by active recovery. J Sport Health Sci. https://doi.org/10.1016/j.jshs.2023.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Akima H (2009) Normalized EMG to normalized torque relationship of vastus intermedius muscle during isometric knee extension. Eur J Appl Physiol 106(5):665–673

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SS and LMB Conceived and designed research. SS performed experiments. SS and LMB analyzed data. SS, LMB, SB, and MGA interpreted results of experiments. SS prepared figures and drafted manuscript. LMB, SB, and MGA edited and revised manuscript and all authors approved final version of manuscript.

Corresponding author

Correspondence to L. M. Bollinger.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by William J. Kraemer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigrist, S., Abel, M.G., Best, S.A. et al. Sleep restriction reduces voluntary isometric quadriceps strength through reduced neuromuscular efficiency, not impaired contractile performance. Eur J Appl Physiol (2024). https://doi.org/10.1007/s00421-024-05535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00421-024-05535-x

Keywords

Navigation