Log in

Nanopore sequencing method for CTG18.1 expansion in TCF4 in late-onset Fuchs endothelial corneal dystrophy and a comparison of the structural features of cornea with first-degree relatives

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate the relationship between the number of trinucleotide repeats (TNR) in late-onset Fuchs corneal endothelial dystrophy (FCED) and to compare the endothelial properties of FCED, first-degree relatives, and controls.

Methods

Blood samples were collected from FCEDs to determine TNR number. The FCED patients, first-degree relatives, and controls were examined with specular microscopy for central corneal thickness (CCT), endothelial cell density (ECD), pleomorphism and polymegatism, and with corneal topography for specific indicators such as (i) displacement of thinnest point of cornea, (ii) loss of isopachs, (iii) focal posterior surface depression towards anterior chamber.

Results

This study included 92 patients with FCED, 92 first-degree relatives, and 96 controls. CCT was thickest in FCEDs (558.0 μm) (p < 0.05) while there was no difference between relatives (533.0 μm) and controls (530.4 μm) (p = 0.845). ECD was decreased in both FCED (2069.2 mm2) and relatives (2171.4 mm2) than controls (2822.9 mm2) (p < 0.05 in both). The presence of pleomorphism and polymegatism was significant in patients with FCED (93.4% and 93.4%, respectively), relatives (86.9% and 86.04%, respectively), and controls (8.33% and 1.04%, respectively) (p < 0.05). Specific topographic indicators differed among the groups (p < 0.05). The mean repeat number of the FCED patients was 17.48 ± 4.54 (12–25) times. The TNR number of FCED cases correlated with the relative CCT (p < 0.05, R = 0.615) and cell density (p = 0.009, R = -0.499).

Conclusions

A strong association between the corneal endothelium in relatives and TNR number of FCEDs was defined. Relatives tended to have fewer corneal endothelial cells, even though they did not have clinical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. OMIM Entry - # 136800 - CORNEAL DYSTROPHY, FUCHS ENDOTHELIAL, 1; FECD1. https://www.omim.org/entry/136800. Accessed 2 Mar 2022

  2. Fuchs E (1910) Dystrophia epithelialis corneae. Albr von Graefes Arch für Ophthalmol 763(76):478–508. https://doi.org/10.1007/BF01986362

    Article  Google Scholar 

  3. Sarnicola C, Farooq AV, Colby K (2019) Fuchs endothelial corneal dystrophy: update on pathogenesis and future directions. Eye Contact Lens 45:1–10. https://doi.org/10.1097/ICL.0000000000000469

    Article  PubMed  Google Scholar 

  4. Zoega GM, Fujisawa A, Sasaki H et al (2006) Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology 113:565–569. https://doi.org/10.1016/J.OPHTHA.2005.12.014

    Article  PubMed  Google Scholar 

  5. Statistical Report - Eye Bank Association of AmericaEye Bank Association of America. https://restoresight.org/what-we-do/publications/statistical-report/. Accessed 2 Mar 2022

  6. Xu TT, Li YJ, Afshari NA et al (2021) Disease expression and familial transmission of fuchs endothelial corneal dystrophy with and without CTG18.1 expansion. Invest Ophthalmol Vis Sci 62:17–17. https://doi.org/10.1167/IOVS.62.1.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porter S, Sightsavers (2017) Cataract surgical rates. Community Eye Health 30:88

    Google Scholar 

  8. Mootha VV, Gong X, Ku HC, **ng C (2014) Association and familial segregation of CTG18.1 trinucleotide repeat expansion of TCF4 gene in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 55:33–42. https://doi.org/10.1167/IOVS.13-12611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baratz KH, Tosakulwong N, Ryu E et al (2010) E2-2 protein and Fuchs’s corneal dystrophy. N Engl J Med 363:1016–1024. https://doi.org/10.1056/NEJMOA1007064

    Article  CAS  PubMed  Google Scholar 

  10. Wieben ED, Aleff RA, Tosakulwong N et al (2012) A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS One 7. https://doi.org/10.1371/JOURNAL.PONE.0049083

  11. Kuot A, Hewitt AW, Snibson GR et al (2017) TGC repeat expansion in the TCF4 gene increases the risk of Fuchs’ endothelial corneal dystrophy in Australian cases. PLoS One 12. https://doi.org/10.1371/JOURNAL.PONE.0183719

  12. Nakano M, Okumura N, Nakagawa H et al (2015) Trinucleotide repeat expansion in the TCF4 gene in Fuchs’ endothelial corneal dystrophy in Japanese. Invest Ophthalmol Vis Sci 56:4865–4869. https://doi.org/10.1167/IOVS.15-17082

    Article  CAS  PubMed  Google Scholar 

  13. Thalamuthu A, Khor CC, Venkataraman D et al (2011) Association of TCF4 gene polymorphisms with Fuchs’ corneal dystrophy in the Chinese. Invest Ophthalmol Vis Sci 52:5573–5578. https://doi.org/10.1167/IOVS.11-7568

    Article  CAS  PubMed  Google Scholar 

  14. **ng C, Gong X, Hussain I et al (2014) Transethnic replication of association of CTG18.1 repeat expansion of TCF4 gene with Fuchs’ corneal dystrophy in Chinese implies common causal variant. Invest Ophthalmol Vis Sci 55:7073–7078. https://doi.org/10.1167/IOVS.14-15390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Soliman AZ, **ng C, Radwan SH et al (2015) Correlation of severity of Fuchs endothelial corneal dystrophy with triplet repeat expansion in TCF4. JAMA Ophthalmol 133:1386–1391. https://doi.org/10.1001/JAMAOPHTHALMOL.2015.3430

    Article  PubMed  Google Scholar 

  16. Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46. https://doi.org/10.1038/NRG3117

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ardui S, Ameur A, Vermeesch JR, Hestand MS (2018) Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 46:2159–2168. https://doi.org/10.1093/NAR/GKY066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gomes-Pereira M, Monckton DG (2004) Mouse tissue culture models of unstable triplet repeats. Methods Mol Biol 277:215–227. https://doi.org/10.1385/1-59259-804-8:215

    Article  CAS  PubMed  Google Scholar 

  19. Kohwi Y, McMurray CT (2013) Trinucleotide Repeat Protocols, vol 1010. https://doi.org/10.1007/978-1-62703-411-1

    Book  Google Scholar 

  20. Gabrieli T, Sharim H, Fridman D et al (2018) Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucleic Acids Res 46:e87. https://doi.org/10.1093/NAR/GKY411

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ebbert MTW, Farrugia SL, Sens JP et al (2018) Long-read sequencing across the C9orf72 “GGGGCC” repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol Neurodegener 13. https://doi.org/10.1186/S13024-018-0274-4

  22. Pham TT, Yin J, Eid JS et al (2016) Single-locus enrichment without amplification for sequencing and direct detection of epigenetic modifications. Mol Gen Genomics 291:1491–1504. https://doi.org/10.1007/S00438-016-1167-2

    Article  CAS  Google Scholar 

  23. Höijer I, Tsai YC, Clark TA et al (2018) Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing. Hum Mutat 39:1262–1272. https://doi.org/10.1002/HUMU.23580

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tsai Y-C, Greenberg D, Powell J et al (2017) Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT sequencing of repeat-expansion disease causative genomic regions. BioRxiv:203919. https://doi.org/10.1101/203919

  25. Sun SY, Wacker K, Baratz KH, Patel SV (2019) Determining subclinical edema in Fuchs endothelial corneal dystrophy: revised classification using Scheimpflug Tomography for Preoperative Assessment. Ophthalmology 126:195–204. https://doi.org/10.1016/J.OPHTHA.2018.07.005

    Article  PubMed  Google Scholar 

  26. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. https://doi.org/10.1093/BIOINFORMATICS/BTY191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vasanth S, Eghrari AO, Gapsis BC et al (2015) Expansion of CTG18.1 trinucleotide repeat in TCF4 Is a potent driver of Fuchs’ corneal dystrophy. Invest Ophthalmol Vis Sci 56:4531–4536. https://doi.org/10.1167/IOVS.14-16122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eghrari AO, Vasanth S, Wang J et al (2017) CTG18.1 expansion in TCF4 ıncreases likelihood of transplantation in Fuchs corneal dystrophy. Cornea 36:40–43. https://doi.org/10.1097/ICO.0000000000001049

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shneor E, Frucht-Pery J, Granit E, Gordon-Shaag A (2020) The prevalence of corneal abnormalities in first-degree relatives of patients with keratoconus: a prospective case-control study. Ophthalmic Physiol Opt 40:442–451. https://doi.org/10.1111/OPO.12706

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jiang X, Zhang H (2021) Deterioration of Avellino corneal dystrophy in a Chinese family after LASIK. Int J Ophthalmol 14:795–799. https://doi.org/10.18240/IJO.2021.06.02

    Article  PubMed  PubMed Central  Google Scholar 

  31. Awwad ST, Yehia M, Mehanna CJ et al (2019) Tomographic and refractive characteristics of pediatric first-degree relatives of keratoconus patients. Am J Ophthalmol 207:71–76. https://doi.org/10.1016/J.AJO.2019.05.032

    Article  PubMed  Google Scholar 

  32. Hafford-Tear NJ, Tsai YC, Sadan AN et al (2019) CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy–associated TCF4 triplet repeat. Genet Med 21:2092–2102. https://doi.org/10.1038/s41436-019-0453-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wieben ED, Aleff RA, Basu S et al (2019) Amplification-free long-read sequencing of TCF4 expanded trinucleotide repeats in Fuchs endothelial corneal dystrophy. PLoS One 14:1–14. https://doi.org/10.1371/journal.pone.0219446

    Article  CAS  Google Scholar 

  34. Breschel TS, McInnis MG, Margolis RL et al (1997) A novel, heritable, expanding CTG repeat in an intron of the SEF2-1 gene on chromosome 18q21.1. Hum Mol Genet 6:1855–1863. https://doi.org/10.1093/HMG/6.11.1855

    Article  CAS  PubMed  Google Scholar 

  35. Riazuddin SA, McGlumphy EJ, Yeo WS et al (2011) Replication of the TCF4 intronic variant in late-onset Fuchs corneal dystrophy and evidence of independence from the FCD2 locus. Invest Ophthalmol Vis Sci 52:2825–2829. https://doi.org/10.1167/IOVS.10-6497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li YJ, Minear MA, Rimmler J et al (2011) Replication of TCF4 through association and linkage studies in late-onset Fuchs endothelial corneal dystrophy. PLoS One 6. https://doi.org/10.1371/JOURNAL.PONE.0018044

  37. Kumar KR, Cowley MJ, Davis RL (2019) Next-generation sequencing and emerging technologieS. Semin Thromb Hemost 45:661–673. https://doi.org/10.1055/s-0039-1688446

    Article  CAS  PubMed  Google Scholar 

  38. Clarke J, Wu HC, Jayasinghe L et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270. https://doi.org/10.1038/NNANO.2009.12

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Liu Q, Zhang P, Wang D et al (2017) Interrogating the “unsequenceable” genomic trinucleotide repeat disorders by long-read sequencing. Genome Med 9:1–16. https://doi.org/10.1186/S13073-017-0456-7/FIGURES/6

    Article  Google Scholar 

  40. Sobottka Ventura AC, Wälti R, Böhnke M (2001) Corneal thickness and endothelial density before and after cataract surgery. Br J Ophthalmol 85:18–20. https://doi.org/10.1136/BJO.85.1.18

    Article  Google Scholar 

  41. Walkow T, Anders N, Klebe S (2000) Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg 26:727–732. https://doi.org/10.1016/S0886-3350(99)00462-9

    Article  CAS  PubMed  Google Scholar 

  42. Traish AS, Colby KA (2010) Approaching cataract surgery in patients with fuchs’ endothelial dystrophy. Int Ophthalmol Clin 50:1–11. https://doi.org/10.1097/IIO.0B013E3181C5728F

    Article  PubMed  Google Scholar 

  43. Patel SV (2021) Imaging Fuchs endothelial corneal dystrophy in clinical practice and clinical trials. Cornea 40:1505–1511. https://doi.org/10.1097/ICO.0000000000002738

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Gozde SAHIN VURAL and Hilmi BOLAT. The first draft of the manuscript was written by Gozde SAHIN VURAL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gozde Sahın Vural.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Balıkesir University Ethical Committee, Approval reference number:2021/135 and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of ınterest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study has not been presented at a conference or meeting.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahın Vural, G., Bolat, H. Nanopore sequencing method for CTG18.1 expansion in TCF4 in late-onset Fuchs endothelial corneal dystrophy and a comparison of the structural features of cornea with first-degree relatives. Graefes Arch Clin Exp Ophthalmol 262, 903–911 (2024). https://doi.org/10.1007/s00417-023-06243-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-023-06243-6

Keywords

Navigation