Log in

Correlations between visual morphological, electrophysiological, and acuity changes in chronic non-arteritic ischemic optic neuropathy

  • Neurophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To study whether there is a correlation between the macular and optic nerve morphological condition and the retinal ganglion cells (RGCs) and visual pathways’ function, and to investigate whether visual acuity (VA) changes might be related to the morpho-functional findings in chronic non-arteritic ischemic optic neuropathy (NAION).

Methods

In this retrospective study, 22 patients (mean age 62.12 ± 6.87) with chronic unilateral NAION providing 22 affected and 22 fellow eyes without NAION (NAION-FE), and 20 (mean age 61.20 ± 7.32) healthy control subjects were studied by spectral domain optical coherence tomography (Sd-OCT) for investigating macular thickness (MT) and volume (MV) of the whole (WR), inner (IR) and outer retina (OR), and the peripapillary retinal nerve fiber layer thickness (RNFL-T) measured overall and for all quadrants. Also, simultaneous 60′ and 15′ pattern electroretinogram (PERG) and visual evoked potentials (VEP) and VA were assessed. Differences of MT and MV of WR, IR, OR, and RNFL-T overall and for all quadrants, PERG amplitude (A), VEP implicit time (IT), and A and VA values between NAION eyes and controls were assessed by one-way analysis of variance. Pearson’s test was used for regression analysis. A p value < 0.01 was considered as significant.

Results

In NAION eyes as compared to NAION-FE eyes and controls, significant (p < 0.01) changes of MT, MV of WR and IR, RNFL-T, 60′ and 15′ PERG A, VEP IT and A, and VA were found. No significant (p > 0.01) OR changes were observed between groups. In NAION eyes, significant (p < 0.01) correlations between MV of WR and IR and 15′ PERG A were found. Overall, RNFL-T values were significantly correlated (p < 0.01) with those of 60′ PERG A and VEP IT and A; temporal RNFL-T values were correlated (p < 0.01) with 15′ PERG A and VEP IT and A ones. Temporal RNFL-T, MV-IR, and 15′ PERG A as well as VEP IT were significantly (p < 0.01) correlated with VA. Significant (p < 0.01) linear correlations between 60′ and 15′ PERG A findings and the corresponding values of 60′ and 15′ VEP A were also found.

Conclusion

Our findings suggest that in chronic NAION, there is a morpho-functional impairment of the IR, with OR structural sparing. VA changes are related to the impaired morphology and function of IR, to the temporal RNFL-T reduction and to the dysfunction of both large and small axons forming the visual pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data and material are available upon request.

References

  1. Mathews MK (2005) Nonarteritic anterior ischemic optic neuropathy. Curr Opin Ophthalmol 16:341–345

    Article  PubMed  Google Scholar 

  2. Contreras I, Noval S, Rebolleda G, Muñoz-Negrete FJ (2007) Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 114:2338–2344

    Article  PubMed  Google Scholar 

  3. Huang-Link YM, Al-Hawasi A, Lindehammar H (2015) Acute optic neuritis: retinal ganglion cell loss precedes retinal nerve fiber thinning. Neurol Sci 36:617–620

    Article  PubMed  Google Scholar 

  4. Parisi V, Gallinaro G, Ziccardi L, Coppola G (2008) Electrophysiological assessment of visual function in patients with non-arteritic ischaemic optic neuropathy. Eur J Neurol 15:839–845

    Article  CAS  PubMed  Google Scholar 

  5. Parisi V, Barbano L, Di Renzo A, Coppola G, Ziccardi L (2019) Neuroenhancement and neuroprotection by oral solution citicoline in non-arteritic ischemic optic neuropathy as a model of neurodegeneration: a randomized pilot study. PLoS One 14:e0220435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rebolleda G, Diez-Alvarez L, Casado A et al (2015) OCT: new perspectives in neuro-ophthalmology. Saudi J Ophthalmol 29:9–25

    Article  PubMed  Google Scholar 

  7. Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS (2005) Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 46:2012–2017

    Article  PubMed  Google Scholar 

  8. Bellusci C, Savini G, Carbonelli M, Carelli V, Sadun AA, Barboni P (2008) Retinal nerve fiber layer thickness in nonarteritic anterior ischemic optic neuropathy: OCT characterization of the acute and resolving phases. Graefes Arch Clin Exp Ophthalmol 246:641–647

    Article  PubMed  Google Scholar 

  9. Akbari M, Abdi P, Fard MA et al (2016) Retinal ganglion cell loss precedes retinal nerve fiber thinning in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol 36:141–146

    Article  PubMed  Google Scholar 

  10. Kupersmith MJ, Garvin MK, Wang JK, Durbin M, Kardon R (2016) Retinal ganglion cell layer thinning within one month of presentation for non-arteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 57:3588–3593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dotan G, Goldstein M, Kesler A, Skarf B (2013) Long-term retinal nerve fiber layer changes following nonarteritic anterior ischemic optic neuropathy. Clin Ophthalmol 7:735–740

    Article  PubMed  PubMed Central  Google Scholar 

  12. Han M, Zhao C, Han QH, **e S, Li Y (2016) Change of retinal nerve layer thickness in non-arteritic anterior ischemic optic neuropathy revealed by Fourier domain optical coherence tomography. Curr Eye Res 41:1076–1081

    Article  CAS  PubMed  Google Scholar 

  13. Larrea BA, Iztueta MG, Indart LM, Alday NM (2014) Early axonal damage detection by ganglion cell complex analysis with optical coherence tomography in nonarteritic anterior ischaemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 252:1839–1846

    Article  PubMed  Google Scholar 

  14. Aggarwal D, Tan O, Huang D, Sadun AA (2012) Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:4539–4545

    Article  PubMed  PubMed Central  Google Scholar 

  15. Papchenko T, Grainger BT, Savino PJ, Gamble GD, Danesh-Meyer HV (2012) Macular thickness predictive of visual field sensitivity in ischaemic optic neuropathy. Acta Ophthalmol 90:e463–e469

    Article  PubMed  Google Scholar 

  16. Gonul S, Koktekir BE, Bakbak B, Gedik S (2013) Comparison of the ganglion cell complex and retinal nerve fibre layer measurements using Fourier domain optical coherence tomography to detect ganglion cell loss in non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 97:1045–1050

    Article  PubMed  Google Scholar 

  17. Keller J, Oakley JD, Russakoff DB, Andorrà-Inglés M, Villoslada P, Sánchez-Dalmau BF (2016) Changes in macular layers in the early course of non-arteritic ischaemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 254:561–567

    Article  PubMed  Google Scholar 

  18. Ackermann P, Brachert M, Albrecht P et al (2017) Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography. Clin Exp Ophthalmol 45:496–508

    Article  PubMed  Google Scholar 

  19. Parisi V, Ziccardi L, Sadun F et al (2019) Functional changes of retinal ganglion cells and visual pathways in patients with Leber’s hereditary optic neuropathy during one year of follow-up in chronic phase. Ophthalmology 126:1033–1044

    Article  PubMed  Google Scholar 

  20. Parisi V, Scarale ME, Balducci N, Fresina M, Campos EC (2010) Electrophysiological detection of delayed postretinal neural conduction in human amblyopia. Invest Ophthalmol Vis Sci 51:5041–5048

    Article  PubMed  Google Scholar 

  21. Ziccardi L, Sadun F, De Negri AM et al (2013) Retinal function and neural conduction along the visual pathways in affected and unaffected carriers with Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 54:6893–6901

    Article  PubMed  Google Scholar 

  22. Janáky M, Fülöp Z, Pálffy A, Benedek K, Benedek G (2006) Electrophysiological findings in patients with nonarteritic anterior ischemic optic neuropathy. Clin Neurophysiol 117:1158–1166

    Article  PubMed  Google Scholar 

  23. Atilla H, Tekeli O, Ornek K, Batioglu F, Elhan AH, Eryilmaz T (2006) Pattern electroretinography and visual evoked potentials in optic nerve diseases. J Clin Neurosci 13:55–59

    Article  PubMed  Google Scholar 

  24. Almárcegui C, Dolz I, Alejos MV, Fernández FJ, Valdizán JR, Honrubia FM (2001) Pattern electroretinogram in anterior ischemic optic neuropathy. Rev Neurol 32:18–21

    PubMed  Google Scholar 

  25. Froehlich J, Kaufman DI (1994) Use of pattern electroretinography to differentiate acute optic neuritis from acute anterior ischemic optic neuropathy. Electroencephalogr Clin Neurophysiol 92:480–486

    Article  CAS  PubMed  Google Scholar 

  26. Deleón-Ortega J, Carroll KE, Arthur SN, Girkin CA (2007) Correlations between retinal nerve fiber layer and visual field in eyes with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 143:288–294

    Article  PubMed  Google Scholar 

  27. Dotan G, Kesler A, Naftaliev E, Skarf B (2015) Comparison of peripapillary retinal nerve fiber layer loss and visual outcome in fellow eyes following sequential bilateral non-arteritic anterior ischemic optic neuropathy. Curr Eye Res 40:632–637

    Article  PubMed  Google Scholar 

  28. Wilhelm B, Lüdtke H, Wilhelm H (2006) Efficacy and tolerability of 0.2% brimonidine tartrate for treatment of acute non-arteritic anterior ischemic optic neuropathy (NAION): a 3-month, double-masked, randomised, placebo-controlled trial. Graefes Arch Clin Exp Ophthalmol 244:551–558

    Article  CAS  PubMed  Google Scholar 

  29. Parisi V, Centofanti M, Gandolfi S et al (2014) Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J Glaucoma 23:391–404

    Article  PubMed  Google Scholar 

  30. Spadea L, Dragani T, Magni R, Rinaldi G, Balestrazzi E (1996) Effect of myopic excimer laser photorefractive keratectomy on the electrophysiologic function of the retina and optic nerve. J Cataract Refract Surg 22:906–909

    Article  CAS  PubMed  Google Scholar 

  31. Celesia GG, Kaufman D (1985) Pattern ERGs and visual evoked potentials in maculopathies and optic nerve diseases. Invest Ophthalmol Vis Sci 26:726–735

    CAS  PubMed  Google Scholar 

  32. Cruz-Herranz A, Balk LJ, Oberwahrenbrock T et al (2016) IMSVISUAL consortium. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 86:2303–2309

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ziccardi L, Parisi V, Giannini D et al (2015) Multifocal VEP provide electrophysiological evidence of predominant dysfunction of the optic nerve fibers derived from the central retina in Leber’s hereditary optic neuropathy. Graefes Arch Clin Exp Ophthalmol 253:1591–1600

    Article  CAS  PubMed  Google Scholar 

  34. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DLL, Mizota A et al (2016) ISCEV standard for clinical visual evoked potentials – (2016 update). Doc Ophthalmol 133:1–9

    Article  PubMed  Google Scholar 

  35. Hawlina M, Konec B (1992) New non-corneal HK-loop electrode for clinical electroretinography. Doc Ophthalmol 81:253–259

    Article  CAS  PubMed  Google Scholar 

  36. Porciatti V, Falsini B (1993) Inner retina contribution to the flicker electroretinogram: a comparison with the pattern electroretinogram. Clin Vision Sci 8:435–447

    Google Scholar 

  37. Parisi V, Miglior S, Manni G, Centofanti M, Bucci MG (2006) Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophthalmology 113:216–228

    Article  PubMed  Google Scholar 

  38. Burkholder BM, Osborne B, Loguidice MJ et al (2009) Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol 66:1366–1372

    Article  PubMed  Google Scholar 

  39. Rebolleda G, Sánchez-Sánchez C, González-López JJ, Contreras I, Muñoz-Negrete FJ (2015) Papillomacular bundle and inner retinal thicknesses correlate with visual acuity in nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 56:682–692

    Article  PubMed  Google Scholar 

  40. Holder GE (1997) The pattern electroretinogram in anterior visual pathways dysfunction and its relationship to the pattern visual evoked potential: a personal clinical review of 743 eyes. Eye 11:924–934

    Article  PubMed  Google Scholar 

  41. Holder GE (1987) The significance of abnormal pattern electroretinography in anterior visual pathway dysfunction. Br J Ophthalmol 71:166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41:2797–2810

    CAS  PubMed  Google Scholar 

  43. Holder GE, Votruba M, Carter AC et al (1999) Electrophysiological findings in dominant optic atrophy (DOA) linked to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 95:217–228

    Article  CAS  Google Scholar 

  44. Harrison JM, O'Connor PS, Young RS, Kincaid M, Bentley R (1993) The pattern ERG in man following surgical resection of the optic nerve. Invest Ophthalmol Vis Sci 28:492–499

    Google Scholar 

  45. Porciatti V (2015) Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res 141:164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Parisi V, Manni G, Spadaro M et al (1999) Correlation between morphological and functional retinal impairment in multiple sclerosis patients previously affected by optic neuritis. Invest Ophthalmol Vis Sci 40:2520–2528

    CAS  PubMed  Google Scholar 

  47. Parisi V, Restuccia R, Fattapposta F et al (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112:1860–1867

    Article  CAS  PubMed  Google Scholar 

  48. Parisi V, Manni G, Centofanti M et al (2001) Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology 108:905–912

    Article  CAS  PubMed  Google Scholar 

  49. Parisi V (2003) Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer’s disease. Semin Ophthalmol 18:50–57

    PubMed  Google Scholar 

  50. Holder GE (2004) Electrophysiological assessment of optic nerve disease. Eye 18:1133–1143

    Article  CAS  PubMed  Google Scholar 

  51. Wilson WB (1978) Visual evoked response differentiation of ischaemic optic neuritis from the optic neuritis of multiple sclerosis. Am J Ophthalmol 86:530–535

    Article  CAS  PubMed  Google Scholar 

  52. Holder GE (1981) The visual evoked potential in ischaemic optic neuropathy. Doc Ophthalmol Proc Ser 27:123–129

    Article  Google Scholar 

  53. Wildberger H (1984) Pattern-evoked potentials and visual field defects in ischaemic optic neuropathy. Doc Ophthalmol Proc Ser 40:193–201

    Google Scholar 

Download references

Acknowledgments

Research for this study was supported in part by the Italian Ministry of Health and in part by Fondazione Roma. Authors acknowledge Dr. Valter Valli Fiore and Maria Luisa Alessi for technical help in electrophysiological recordings and graphics, Dr. Federica Petrocchi for executing psychophysical test, and Dr. Ester Elmo for critical revision of the bibliography.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: VP; analysis and interpretation: VP, LB, LZ; review and discussion: VP, LB, LZ; data collection: VP, LB; overall responsibility: VP.

Corresponding author

Correspondence to Lucia Ziccardi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This research was approved by the local ethics committee on February 14, 2017 (Comitato Etico Centrale IRCCS Lazio, Sezione IFO/Fondazione Bietti, Rome, Italy).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Each patient consented for data publication.

Proprietary interest

None of the author has proprietary interest in the content of the manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbano, L., Ziccardi, L. & Parisi, V. Correlations between visual morphological, electrophysiological, and acuity changes in chronic non-arteritic ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 259, 1297–1308 (2021). https://doi.org/10.1007/s00417-020-05023-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-05023-w

Keywords

Navigation