Log in

Circular walking is useful for assessing the risk of falls in early progressive supranuclear palsy

  • Short Commentary
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Progressive supranuclear palsy (PSP) is characterized by early onset postural instability and frequent falls. Circular walking necessitates dynamic postural control, which is impaired in patients with PSP. We aimed to explore gait parameters associated with the risk of falls in patients with PSP, focusing on circular walking.

Methods

Sixteen drug-naïve patients with PSP, 22 drug-naïve patients with Parkinson’s disease (PD), and 23 healthy controls were enrolled. Stride lengths/velocities and their coefficients of variation (CV) during straight and circular walking (walking around a circle of 1-m diameter) were measured under single-task and cognitive dual-task conditions. Correlation analysis was performed between gait parameters and postural instability and gait difficulty (PIGD) motor subscores, representing the risk of falls.

Results

Patients with PSP had significantly higher CVs of stride lengths/velocities during circular walking than those during straight walking, and the extent of exacerbation of CVs in patients with PSP was larger than that in patients with PD under single-task conditions. Stride lengths/velocities and their CVs were significantly correlated with PIGD motor subscores in patients with PSP only during single-task circular walking. In addition, patients with PSP showed progressive decrements of stride lengths/velocities over steps only during single-task circular walking.

Conclusions

Worse gait parameters during circular walking are associated with an increased risk of falls in patients with PSP. Circular walking is a challenging task to demand the compromised motor functions of patients with PSP, unmasking impaired postural control and manifesting sequence effect. Assessing circular walking is useful for evaluating the risk of falls in patients with early PSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359

    Article  CAS  PubMed  Google Scholar 

  2. Williams DR, Lees AJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8(3):270–279

    Article  PubMed  Google Scholar 

  3. Bluett B, Litvan I, Cheng S, Juncos J, Riley DE, Standaert DG et al (2017) Understanding falls in progressive supranuclear palsy. Parkinsonism Relat Disord 35:75–81

    Article  PubMed  Google Scholar 

  4. Glasmacher SA, Leigh PN, Saha RA (2017) Predictors of survival in progressive supranuclear palsy and multiple system atrophy: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 88(5):402–411

    Article  PubMed  Google Scholar 

  5. Brown FS, Rowe JB, Passamonti L, Rittman T (2020) Falls in progressive supranuclear palsy. Mov Disord Clin Pract 7(1):16–24

    Article  PubMed  Google Scholar 

  6. Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L (2017) Falls in Parkinson’s disease: a complex and evolving picture. Mov Disord 32(11):1524–1536

    Article  PubMed  Google Scholar 

  7. Goodworth AD, Paquette C, Jones GM, Block EW, Fletcher WA, Hu B et al (2012) Linear and angular control of circular walking in healthy older adults and subjects with cerebellar ataxia. Exp Brain Res 219(1):151–161

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guglielmetti S, Nardone A, De Nunzio AM, Godi M, Schieppati M (2009) Walking along circular trajectories in Parkinson’s disease. Mov Disord 24(4):598–604

    Article  PubMed  Google Scholar 

  9. Borm CDJM, Krismer F, Wenning GK, Seppi K, Poewe W, Pellecchia MT et al (2018) Axial motor clues to identify atypical parkinsonism: a multicentre European cohort study. Parkinsonism Relat Disord 56:33–40

    Article  PubMed  Google Scholar 

  10. Bloem BR, de Vries NM, Ebersbach G (2015) Nonpharmacological treatments for patients with Parkinson’s disease. Mov Disord 30(11):1504–1520

    Article  PubMed  Google Scholar 

  11. Gilat M, de Lima ALS, Bloem BR, Shine JM, Nonnekes J, Lewis SJG (2018) Freezing of gait: Promising avenues for future treatment. Parkinsonism Relat Disord 52:7–16

    Article  PubMed  Google Scholar 

  12. Nonnekes J, Snijders AH, Nutt JG, Deuschl G, Giladi N, Bloem BR (2015) Freezing of gait: a practical approach to management. Lancet Neurol 14(7):768–778

    Article  PubMed  Google Scholar 

  13. Lord S, Galna B, Yarnall AJ, Coleman S, Burn D, Rochester L (2016) Predicting first fall in newly diagnosed Parkinson’s disease: insights from a fall-naïve cohort. Mov Disord 31(12):1829–1836

    Article  PubMed  Google Scholar 

  14. Ma L, Mi TM, Jia Q, Han C, Chhetri JK, Chan P (2022) Gait variability is sensitive to detect Parkinson’s disease patients at high fall risk. Int J Neurosci 132(9):888–893

    Article  PubMed  Google Scholar 

  15. Iansek R, Huxham F, McGinley J (2006) The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Mov Disord 21(9):1419–1424

    Article  PubMed  Google Scholar 

  16. Ohara M, Hirata K, Hallett M, Matsubayashi T, Chen Q, Kina S et al (2023) Long-term levodopa ameliorates sequence effect in simple, but not complex walking in early Parkinson’s disease patients. Parkinsonism Relat Disord 108:105322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ganz DA, Higashi T, Rubenstein LZ (2005) Monitoring falls in cohort studies of community-dwelling older people: effect of the recall interval. J Am Geriatr Soc 53(12):2190–2194

    Article  PubMed  Google Scholar 

  18. Golbe LI, Ohman-Strickland PA (2007) A clinical rating scale for progressive supranuclear palsy. Brain 130(Pt 6):1552–1565

    Article  PubMed  Google Scholar 

  19. Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC (2013) How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: comparison with the unified Parkinson’s disease rating scale. Mov Disord 28(5):668–670

    Article  PubMed  Google Scholar 

  20. Voss TS, Elm JJ, Wielinski CL, Aminoff MJ, Bandyopadhyay D, Chou KL et al (2012) Fall frequency and risk assessment in early Parkinson’s disease. Parkinsonism Relat Disord 18(7):837–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pelicioni PHS, Menant JC, Latt MD, Lord SR (2019) Falls in Parkinson’s disease subtypes: risk factors, locations and circumstances. Int J Environ Res Public Health 16(12):2216

    Article  PubMed  PubMed Central  Google Scholar 

  22. Safarpour D, Dale ML, Shah VV, Talman L, Carlson-Kuhta P, Horak FB et al (2022) Surrogates for rigidity and PIGD MDS-UPDRS subscores using wearable sensors. Gait Posture 91:186–191

    Article  PubMed  Google Scholar 

  23. Adkin AL, Frank JS, Jog MS (2003) Fear of falling and postural control in Parkinson’s disease. Mov Disord 18(5):496–502

    Article  PubMed  Google Scholar 

  24. Curtze C, Nutt JG, Carlson-Kuhta P, Mancini M, Horak FB (2016) Objective gait and balance impairments relate to balance confidence and perceived mobility in people with Parkinson disease. Phys Ther 96(11):1734–1743

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shin HW, Kim MS, Kim SR, Jeon SR, Chung SJ (2020) Long-term effects of bilateral subthalamic deep brain stimulation on postural instability and gait difficulty in patients with Parkinson’s disease. J Mov Disord 13(2):127–132

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lindemann U, Nicolai S, Beische D, Becker C, Srulijes K, Dietzel E et al (2010) Clinical and dual-tasking aspects in frequent and infrequent fallers with progressive supranuclear palsy. Mov Disord 25(8):1040–1046

    Article  PubMed  Google Scholar 

  27. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE et al (2017) Clinical diagnosis of progressive supranuclear palsy: The Movement Disorder Society Criteria. Mov Disord 32(6):853–864

    Article  PubMed  PubMed Central  Google Scholar 

  28. Berg D, Adler CH, Bloem BR, Chan P, Gasser T, Goetz CG et al (2018) Movement disorder society criteria for clinically established early Parkinson’s disease. Mov Disord 33(10):1643–1646

    Article  PubMed  Google Scholar 

  29. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699

    Article  PubMed  Google Scholar 

  30. Reitan RM (1955) The relation of the trail making test to organic brain damage. J Consult Psychol 19(5):393–394

    Article  CAS  PubMed  Google Scholar 

  31. Elkurd M, Wang J, Dewey RB (2021) Lateralization of Motor Signs Affects Symptom Progression in Parkinson Disease. Front Neurol 12:711045

    Article  PubMed  PubMed Central  Google Scholar 

  32. Awata S, Sugiyama M, Ito K, Ura C, Miyamae F, Sakuma N et al (2016) Development of the dementia assessment sheet for community-based integrated care system. Geriatr Gerontol Int 16(Suppl 1):123

    Article  PubMed  Google Scholar 

  33. Hori K, Mao Y, Ono Y, Ora H, Hirobe Y, Sawada H et al (2019) Inertial measurement unit-based estimation of foot trajectory for clinical gait analysis. Front Physiol 10:1530

    Article  PubMed  Google Scholar 

  34. Chee R, Murphy A, Danoudis M, Georgiou-Karistianis N, Iansek R (2009) Gait freezing in Parkinson’s disease and the stride length sequence effect interaction. Brain 132(Pt 8):2151–2160

    Article  PubMed  Google Scholar 

  35. Kim SL, Lee MJ, Lee MS (2014) Cognitive dysfunction associated with falls in progressive supranuclear palsy. Gait Posture 40(4):605–609

    Article  PubMed  Google Scholar 

  36. Cohen J (1988) The t test for means. In: Cohen J (ed) Statistical power analysis for the behavioral sciences, 2nd ed, pp 19–74

  37. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM (2005) Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci 22(5):1248–1256

    Article  PubMed  Google Scholar 

  38. Peterson DS, Horak FB (2016) Neural control of walking in people with Parkinsonism. Physiology (Bethesda) 31(2):95–107

    CAS  PubMed  Google Scholar 

  39. Stack E, Ashburn A (1999) Fall events described by people with Parkinson’s disease: implications for clinical interviewing and the research agenda. Physiother Res Int 4(3):190–200

    Article  CAS  PubMed  Google Scholar 

  40. Stack EL, Ashburn AM, Jupp KE (2006) Strategies used by people with Parkinson’s disease who report difficulty turning. Parkinsonism Relat Disord 12(2):87–92

    Article  PubMed  Google Scholar 

  41. Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwinderman AH (2001) Prospective assessment of falls in Parkinson’s disease. J Neurol 248(11):950–958

    Article  CAS  PubMed  Google Scholar 

  42. Ling H, Massey LA, Lees AJ, Brown P, Day BL (2012) Hypokinesia without decrement distinguishes progressive supranuclear palsy from Parkinson’s disease. Brain 135(Pt 4):1141–1153

    Article  PubMed  PubMed Central  Google Scholar 

  43. Djurić-Jovičić M, Petrović I, Ječmenica-Lukić M, Radovanović S, Dragašević-Mišković N, Belić M et al (2016) Finger tap** analysis in patients with Parkinson’s disease and atypical Parkinsonism. J Clin Neurosci 30:49–55

    Article  PubMed  Google Scholar 

  44. Bologna M, Latorre A, Di Biasio F, Conte A, Belvisi D, Modugno N et al (2016) The effect of l-dopa/carbidopa intestinal gel in Parkinson disease assessed using neurophysiologic techniques. Clin Neuropharmacol 39(6):302–305

    Article  CAS  PubMed  Google Scholar 

  45. Bologna M, Leodori G, Stirpe P, Paparella G, Colella D, Belvisi D et al (2016) Bradykinesia in early and advanced Parkinson’s disease. J Neurol Sci 369:286–291

    Article  PubMed  Google Scholar 

  46. Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A (2020) Evolving concepts on bradykinesia. Brain 143(3):727–750

    Article  PubMed  Google Scholar 

  47. Fasano A, Schlenstedt C, Herzog J, Plotnik M, Rose FEM, Volkmann J et al (2016) Split-belt locomotion in Parkinson’s disease links asymmetry, dyscoordination and sequence effect. Gait Posture 48:6–12

    Article  PubMed  Google Scholar 

  48. Bologna M, Espay AJ, Fasano A, Paparella G, Hallett M, Berardelli A (2023) Redefining bradykinesia. Mov Disord 38(4):551–557

    Article  PubMed  PubMed Central  Google Scholar 

  49. Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Höglinger GU (2017) Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 16(7):552–563

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the clinical staff in our hospitals for taking care of patients.

Funding

This research was supported by the Nakayama Foundation for Human Science.

Author information

Authors and Affiliations

Authors

Contributions

M.O. designed the study, acquired, and analyzed the data, and wrote the draft. K.H. designed the study, acquired the data, and revised the manuscript. T.M., Q.C., and K.S. acquired the data and revised the manuscript. R.H. and A.H. contributed to the statistical analysis of the manuscript and revised the manuscript. T.H. contributed to the analysis of data, the conception and design of the study, and revised and finalized the manuscript.

Corresponding author

Correspondence to Takaaki Hattori.

Ethics declarations

Conflicts of interest

Dr. Ohara declares no conflict of interest associated with this manuscript. Dr. Hirata declares no conflict of interest associated with this manuscript. Dr. Matsubayashi declares no conflict of interest associated with this manuscript. Dr. Chen declares no conflict of interest associated with this manuscript. Dr. Shimano declares no conflict of interest associated with this manuscript. Dr. Hanazawa declares no conflict of interest associated with this manuscript. Dr. Hirakawa declares no conflict of interest associated with this manuscript. Dr. Yokota declares no conflict of interest associated with this manuscript. Dr. Hattori has received speaker’s honoraria from Daiichi Sankyo Company, Limited; Sumitomo Dainippon Pharma Co., Ltd.; Integra Japan Co., Ltd and Kyowa Kirin Co., Ltd.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8475 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohara, M., Hirata, K., Matsubayashi, T. et al. Circular walking is useful for assessing the risk of falls in early progressive supranuclear palsy. J Neurol (2024). https://doi.org/10.1007/s00415-024-12551-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00415-024-12551-6

Keywords

Navigation