Log in

The Sondalo gabbro contact aureole (Campo unit, Eastern Alps): implications for mid-crustal mafic magma emplacement

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Contact aureoles rimming plutonic rocks are the locus of metamorphism and deformations witnessing magma emplacement mechanisms in the crust. In this study, structural and petrological observations are combined to mineral equilibria modelling to unravel the polyphase tectono-metamorphic history of the Permian Sondalo gabbro and its host rock, the Campo unit (Eastern Alps). The Campo unit consists of Grt–St–Ms–Bt–Pl–Qtz ± Sil ± And ± Crd mica schists attesting of a Carboniferous prograde PT path, reaching 6 kbar/600 °C and subsequently 5.6 kbar/650 °C. This metamorphism is coeval with the formation of a sub-vertical NE–SW trending foliation (S1) and its overprint by a sub-vertical NW–SE trending foliation (S2). The heat brought by the Permian intrusives subsequently caused heating of the Campo unit at around 3–4 kbar/540 °C reflected by regional static crystallization of cordierite and andalusite porphyroblasts. During the intrusion of the Sondalo gabbro, thermal peak conditions are recorded by Grt–Sil–Spl–Crd–Ilm granulitic xenoliths at ~5.5 kbar/930 °C, subsequently exhumed at ~4 kbar during the development of a new foliation (S3). This foliation is localized around the pluton and moderately dips away from the centre of the pluton. In the migmatitic contact aureole, Grt–Sil–Bt–Pl–Qtz–Ilm and Grt–Sil–Crd–Spl–Bt–Kfs–Ilm residual rocks bear the new foliation (S3) and document a decompression from 6 kbar/750 °C to 5 kbar/725 °C and from 5.2 kbar/800 °C to reach 4.8 kbar/770 °C, respectively. The PTd paths recorded by the host rock and the xenoliths point to a two-step magma emplacement. First the Sondalo gabbro intruded the Campo unit causing heating of the host rock without deformation at 3–4 kbar. Second, the ductile flow along the pluton margins developed a new foliation (S3) during exhumation of the pluton and its immediate contact aureole from 6 to 4 kbar. Altogether, it indicates a progressive increase in mechanical coupling between the pluton and the host rock during magma emplacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ague JJ, Baxter EF (2007) Brief thermal pulses during mountain building recorded by Sr diffusion in apatite and multicomponent diffusion in garnet. Earth Planet Sci Lett 261:500–516. doi:10.1016/j.epsl.2007.07.017

    Article  Google Scholar 

  • Aguilar C, Liesa M, Štípská P, Schulmann K, Muñoz JA, Casas JM (2015) P–T–t–d evolution of orogenic middle crust of the Roc de Frausa Massif (Eastern Pyrenees): A result of horizontal crustal flow and Carboniferous doming? J Metamorph Geol 33:273–294

    Article  Google Scholar 

  • Annen C (2011) Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism–volcanism relationships. Tectonophysics 500:3–10. doi:10.1016/j.tecto.2009.04.010

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539. doi:10.1093/petrology/egi084

    Article  Google Scholar 

  • Arzi AA (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44:173–184. doi:10.1016/0040-1951(78)90069-0

    Article  Google Scholar 

  • Ashworth JR (1975) Staurolite at anomalously high grade. Contrib Miner Petrol 53:281–291. doi:10.1007/bf00382444

    Article  Google Scholar 

  • Bachmann G, Grauert B (1981) Radiometrische Alterbestimmungen des Gabbro von Sondalo. Oberes Velltlin. Italienische Alpen. Fortschr Miner 59:11–13

    Google Scholar 

  • Barton MD, Staude J-M, Snow EA, Johnson DA (1991) Aureole systematics. Rev Miner Geochem 26:723–847

    Google Scholar 

  • Bergomi MA, Boriani A (2012) Late Neoproterozoic—early Paleozoic accretion of the Southalpine and Austroalpine basements of Central Alps (Italy). Géol Fr 1:69

    Google Scholar 

  • Bianchi Potenza B, Gorla L, Notarpietro A (1978) La “formazione di Valle Grosina”: revisione dei suoi aspetti petrografici in un nuovo contesto geologico II. Gli “gneiss minuti”. Rend Soc Ital Miner Petrol 34:371–385

    Google Scholar 

  • Bianchi Potenza B, Carimati R, Potenza R, Testa B (1985) Considerazioni cronologiche sul filone trachitico di Sondalo (Lombardia, Valtellina). Atti Soc Ital Sci Nat Mus Civ Stor Nat Milano 120:141–144

    Google Scholar 

  • Boriani A, Traversi G, Del Moro A, Notarpietro A (1982) Il “granito di Brusio” (Val Poschiavo - Svizzera): caratterizzazioni chimiche, petrologiche e radiometriche. Rend Soc Ital Miner Petrol 38:97–108

    Google Scholar 

  • Bousquet R, Oberhänsli R, Schmid SM, et al (2012) Metamorphic framework of the Alps

  • Braga R, Giacomini F, Messiga B, Tribuzio R (2001) The Sondalo Gabbroic Complex (Central Alps, Northern Italy): evidence for emplacement of mantle-derived melts into amphibolite facies metapelites. Phys Chem Earth Pt A 26:333–342

    Article  Google Scholar 

  • Braga R, Callegari A, Messiga B, Ottolini L, Renna MR, Tribuzio R (2003) Origin of prismatine from the Sondalo granulites (Central Alps, northern Italy). Eur J Miner 15:393–400

    Article  Google Scholar 

  • Braga R, Massonne H-J, Morten L (2007) An early metamorphic stage for the Variscan Ulten Zone gneiss (NE Italy): evidence from mineral inclusions in kyanite. Mineral Mag 71:691–702. doi:10.1180/minmag.2007.071.6.691

    Article  Google Scholar 

  • Brugger J (1994) Les veines à andalousite du Pischahorn (Grisons, Suisse). Schweiz Miner Petrogr Mitt 74:191–202

    Google Scholar 

  • Büchi H (1987) Geologie und Petrographie der Bernina IX. Das Gebiet zwischen Pontresina und dem Morteratschgletscher. Unpubl. Diplomarbeit, Univ. Zürich

  • Büchi H (1994) Der variskiscke Magmatismus in der östlichen Bernina. Schweiz Miner Petrogr Mitt 74:359–371

    Google Scholar 

  • Caddick MJ, Konopásek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51:2327–2347

    Article  Google Scholar 

  • Campa G, Giacomini F, Giglia A (1997) Carta Geologica del versante sinistro della Valtellina tra la Val di Scala e la Valle delle Presure (Sondrio), Scala 1:10,000. University of Pavia, unpublished master thesis

  • Clark C, Fitzsimons ICW, Healy D, Harley SL (2011) How does the continental crust get really hot? Elements 7:235–240. doi:10.2113/gselements.7.4.235

    Article  Google Scholar 

  • Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204:339–360. doi:10.1016/0040-1951(92)90316-X

    Article  Google Scholar 

  • Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20:683–696. doi:10.1046/j.1525-1314.2002.00395.x

    Article  Google Scholar 

  • Costa S, Rey P (1995) Lower crustal rejuvenation and growth during post-thickening collapse: Insights from a crustal cross section through a Variscan metamorphic core complex. Geology 23:905–908. doi:10.1130/0091-7613(1995)023<0905:lcragd>2.3.co;2

    Article  Google Scholar 

  • Del Moro A, Notarpietro A (1987) Rb–Sr geochemistry of some Hercynian granitoids overprinted by eo-Alpine metamorphism in the Upper Valtellina, Central Alps. Schweiz Miner Petrogr Mitt 67:295–306

    Google Scholar 

  • Dorfler KM, Caddick MJ, Tracy RJ (2015) Thermodynamic modeling of crustal melting using xenolith analogs from the Cortlandt Complex, New York, USA. J Petrol 56:389–408

    Article  Google Scholar 

  • Festa V, Caggianelli A, Langone A, Prosser G (2013) Time–space relationships among structural and metamorphic aureoles related to granite emplacement: a case study from the Serre Massif (southern Italy). Geol Mag 150:441–454

    Article  Google Scholar 

  • Floess D, Baumgartner LP (2015) Constraining magmatic fluxes through thermal modelling of contact metamorphism. Geol Soc London Spec Publ 422:41–56

    Article  Google Scholar 

  • Florence FP, Spear FS (1991) Effects of diffusional modification of garnet growth zoning on PT path calculations. Contrib Miner Petrol 107:487–500. doi:10.1007/BF00310683

    Article  Google Scholar 

  • Galli A, Le Bayon B, Schmidt MW, Burg JP, Reusser E, Sergeev SA, Larionov A (2012) U–Pb zircon dating of the Gruf Complex: disclosing the late Variscan granulitic lower crust of Europe stranded in the Central Alps. Contrib Miner Petrol 163:353–378. doi:10.1007/s00410-011-0676-6

    Article  Google Scholar 

  • Ganguly J (1972) Staurolite stability and related parageneses: theory, experiments, and applications. J Petrol 13:335–365. doi:10.1093/petrology/13.2.335

    Article  Google Scholar 

  • García-Casco A, Haissen F, Castro A, El-Hmidi H, Torres-Roldán RL, Millán G (2003) Synthesis of staurolite in melting experiments of a natural metapelite: consequences for the phase relations in low-temperature pelitic migmatites. J Petrol 44:1727–1757

    Article  Google Scholar 

  • Gazzola D, Gosso G, Pulcrano E, Spalla MI (2000) Eo-Alpine HP metamorphism in the Permian intrusives from the steep belt of the central Alps (Languard-Campo nappe and Tonale Series). Geodin Acta 13:149–167

    Article  Google Scholar 

  • Glazner AF, Bartley JM (2006) Is sto** a volumetrically significant pluton emplacement process? Geol Soc Am Bull 118:1189–1195

    Article  Google Scholar 

  • Grevel K-D, Navrotsky A, Fockenberg T, Majzlan J (2002) The enthalpy of formation and internally consistent thermodynamic data of Mg-staurolite. Am Miner 87:397–404

    Article  Google Scholar 

  • Guiraud M, Powell R, Rebay G (2001) H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J Metamorph Geol 19:445–454. doi:10.1046/j.0263-4929.2001.00320.x

    Article  Google Scholar 

  • Guntli R, Liniger M (1989) Metamorphose in der Magma-Decke im Bereich Piz da la Margna und Piz Fedoz (Oberengadin). Schweiz Miner Petrogr Mitt 69:289–301

    Google Scholar 

  • Halmes C (1991) Petrographische und geochemische Untersuchungen am Err-Kristallin zwischen St. Moritz und dem Val Bever (Engadin, Graubünden). University of Bern, Lizentiarbeit

    Google Scholar 

  • Hansmann W, Müntener O, Hermann J (2001) U–Pb zircon geochronology of a tholeiitic intrusion and associated migmatites at a continental crust-mantle transition, Val Malenco, Italy. Schweiz Miner Petrogr Mitt 81:239–255

    Google Scholar 

  • Hanson GN, El Tahlawi MR, Weber W (1966) K-Ar and Rb-Sr ages of pegmatites in the South Central Alps. Earth Planet Sci Lett 1:407–413

    Article  Google Scholar 

  • Harley SL (1989) The origins of granulites: a metamorphic perspective. Geol Mag 126:215–247

    Article  Google Scholar 

  • Hasalová P, Štípská P, Powell R, Schulmann K, Janoušek V, Lexa O (2008) Transforming mylonitic metagranite by open-system interactions during melt flow. J Metamorph Geol 26:55–80. doi:10.1111/j.1525-1314.2007.00744.x

    Article  Google Scholar 

  • Hermann J, Müntener O, Trommsdorff V, Hansmann W, Piccardo GB (1997) Fossil crust-to-mantle transition, Val Malenco (Italian Alps). J Geophys Res Solid Earth 102:20123–20132. doi:10.1029/97jb01510

    Article  Google Scholar 

  • Hermann J, Müntener O, Günther D (2001) Differentiation of Mafic Magma in a Continental Crust-to-Mantle Transition Zone. J Petrol 42:189–206. doi:10.1093/petrology/42.1.189

    Article  Google Scholar 

  • Hoinkes G, Thöni M (1993) Pre-mesozoic geology in the Alps. In: Raumer JF, Neubauer F (eds) Springer, Berlin Heidelberg, pp 485–494

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. doi:10.1111/j.1525-1314.1998.00140.x

    Article  Google Scholar 

  • Holland T, Powell R (2003) Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Miner Petrol 145:492–501. doi:10.1007/s00410-003-0464-z

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  • Indares A, White RW, Powell R (2008) Phase equilibria modelling of kyanite-bearing anatectic paragneisses from the central Grenville Province. J Metamorph Geol 26:815–836. doi:10.1111/j.1525-1314.2008.00788.x

    Article  Google Scholar 

  • Johnson TE, Brown M, White RW (2010) Petrogenetic modelling of strongly residual metapelitic xenoliths within the southern Platreef, Bushveld Complex, South Africa. J Metamorph Geol 28:269–291

    Article  Google Scholar 

  • Johnson TE, White RW, Brown M (2011) A year in the life of an aluminous metapelite xenolith—the role of heating rates, reaction overstep, H2O retention and melt loss. Lithos 124:132–143. doi:10.1016/j.lithos.2010.08.009

    Article  Google Scholar 

  • Koenig MA (1964) Geologisch-petrographische Untersuchungen im oberen Veltlin. PhD thesis, Universität Zurich

  • Kriegsman LM, Hensen BJ (1998) Back reaction between restite and melt: implications for geothermobarometry and pressure-temperature paths. Geology 26:1111–1114. doi:10.1130/0091-7613(1998)026<1111:brbram>2.3.co;2

    Article  Google Scholar 

  • Langone A, Braga R, Massonne H-J, Tiepolo M (2011) Preservation of old (prograde metamorphic) U–Th–Pb ages in unshielded monazite from the high-pressure paragneisses of the Variscan Ulten Zone (Italy). Lithos 127:68–85. doi:10.1016/j.lithos.2011.08.007

    Article  Google Scholar 

  • Lister JR, Kerr RC (1991) Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J Geophys Res Solid Earth 96:10049–10077

    Article  Google Scholar 

  • Mahar EM, Baker JM, Powell R, Holland TJB, Howell N (1997) The effect of Mn on mineral stability in metapelites. J Metamorph Geol 15:223–238. doi:10.1111/j.1525-1314.1997.00011.x

    Article  Google Scholar 

  • Mancktelow NS (2008) Tectonic pressure: theoretical concepts and modelled examples. Lithos 103:149–177. doi:10.1016/j.lithos.2007.09.013

    Article  Google Scholar 

  • Manzotti P, Rubatto D, Darling J, Zucali M, Cenki-Tok B, Engi M (2012) From Permo-Triassic lithospheric thinning to Jurassic rifting at the Adriatic margin: Petrological and geochronological record in Valtournenche (Western Italian Alps). Lithos 146–147:276–292. doi:10.1016/j.lithos.2012.05.007

    Article  Google Scholar 

  • Markl G (2005) Mullite-corundum-spinel-cordierite-plagioclase xenoliths in the Skaergaard Marginal Border Group: multi-stage interaction between metasediments and basaltic magma. Contrib Miner Petrol 149:196–215

    Article  Google Scholar 

  • Meier A (2003) The Periadriatic Fault System in Valtellina (N-Italy) and the Evolution of the Southwestern Segment of the Eastern Alps. PhD Thesis, ETH Zurich

  • Mitchell RK, Indares A, Ryan B (2014) High to ultrahigh temperature contact metamorphism and dry partial melting of the Tasiuyak paragneiss, Northern Labrador. J Metamorph Geol 32:535–555

    Article  Google Scholar 

  • Mohn G, Manatschal G, Masini E, Müntener O (2011) Rift-related inheritance in orogens: a case study from the Austroalpine nappes in Central Alps (SE-Switzerland and N-Italy). Int J Earth Sci 100:937–961. doi:10.1007/s00531-010-0630-2

    Article  Google Scholar 

  • Mohn G, Manatschal G, Beltrando M, Masini E, Kusznir N (2012) Necking of continental crust in magma-poor rifted margins: evidence from the fossil Alpine Tethys margins. Tectonics 31:1–28

    Article  Google Scholar 

  • Müntener O, Hermann J, Trommsdorff V (2000) Cooling history and exhumation of lower-crustal granulite and upper mantle (Malenco, Eastern Central Alps). J Petrol 41:175–200. doi:10.1093/petrology/41.2.175

    Article  Google Scholar 

  • Pace F (1966) Studio petrografico dell’alta Val Viola (Sondrio). Atti Soc Ital Sci Nat Mus Civ Stor Nat Milano 105:43–60

    Google Scholar 

  • Paterson SR, Farris DW (2006) Downward host rock transport and the formation of rim monoclines during the emplacement of Cordilleran batholiths. Earth Environ Sci Trans R Soc Edinb 97:397–413

    Article  Google Scholar 

  • Paterson SR, Miller RB (1998) Mid-crustal magmatic sheets in the Cascades Mountains, Washington: implications for magma ascent. J Struct Geol 20:1345–1363

    Article  Google Scholar 

  • Paterson SR, Vernon RH (1995) Bursting the bubble of ballooning plutons: a return to nested diapirds emplaced by multiple processes. Geol Soc Am Bull 107:1356–1380

    Article  Google Scholar 

  • Paterson SR, Vernon RH, Fowler TK (1991) Aureole tectonics. Rev Miner Geochem 26:673–722

    Google Scholar 

  • Pattison DRM, Tracy RJ (1991) Phase equilibria and thermobarometry of metapelites. Rev Miner Geochem 26:105–206

    Google Scholar 

  • Petri B, Skrzypek E (2013) TCWizard Matlab Package - Help File, 26/04/2013 Update. Online report, University of Strasbourg. Available at: http://eost.unistra.fr/fileadmin/upload/EOST/Benoit_Petri/software1/TCWizard_HelpFile.pdf

  • Powell R, Holland T, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16:577–588. doi:10.1111/j.1525-1314.1998.00157.x

    Article  Google Scholar 

  • Powell R, Guiraud M, White RW (2005) Truth and beauty in metamorphic phase-equilibria: conjugate variables and phase diagrams. Can Miner 43:21–33. doi:10.2113/gscanmin.43.1.21

    Article  Google Scholar 

  • Ramberg H (1981) Gravity, deformation and the earth’s crust, in theory, experiments and geological application. Academic Press, London

    Google Scholar 

  • Ring U, Brandon MT, Willett SD, Lister GS (1999) Exhumation processes. Geol Soc Lond Spec Publ 154:1–27

    Article  Google Scholar 

  • Rubenach MJ, Bell TH (1988) Microstructural controls and the role of graphite in matrix/porphyroblast exchange during synkinematic andalusite growth in a granitoid aureole. J Metamorph Geol 6:651–666. doi:10.1111/j.1525-1314.1988.tb00446.x

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Sato K, Santosh M, Tsunogae T (2010) High PT phase relation of magnesian (Mg0.7Fe0.3) staurolite compositon in the system FeO–MgO–Al2O3–SiO2-H2O: implications for prograde high-pressure history of ultrahigh-temperature metamorphic rocks. Am Miner 95:177–184. doi:10.2138/am.2010.3170

    Article  Google Scholar 

  • Schmid SM, Haas R (1989) Transition from near-surface thrusting to Intrabasement Decollement, Schlinig Thrust, eastern Alps. Tectonics 8:697–718. doi:10.1029/TC008i004p00697

    Article  Google Scholar 

  • Schuster R, Stüwe K (2008) Permian metamorphic event in the Alps. Geology 36:603–606

    Article  Google Scholar 

  • Siivola J, Schmid R (2007) List of mineral abbreviations - recommendations by the IUGS subcomission on the systematics of metamorphic rocks. IUGS web version 010207:1–14

    Google Scholar 

  • Sinigoi S, Quick JE, Demarchi G, Klötzli U (2011) The role of crustal fertility in the generation of large silicic magmatic systems triggered by intrusion of mantle magma in the deep crust. Contrib Miner Petrol 162:691–707. doi:10.1007/s00410-011-0619-2

    Article  Google Scholar 

  • Skrzypek E, Štípská P, Schulmann K, Lexa O, Lexová M (2011) Prograde and retrograde metamorphic fabrics—a key for understanding burial and exhumation in orogens (Bohemian Massif). J Metamorph Geol 29:451–472. doi:10.1111/j.1525-1314.2010.00924.x

    Article  Google Scholar 

  • Sölva H, Thöni M, Habler G (2003) Dating a single garnet crystal with very high Sm/Nd ratios (Campo basement unit, Eastern Alps). Eur J Miner 15:35–42

    Article  Google Scholar 

  • Spear FS, Kohn MJ, Florence FP, Menard T (1990) A model for garnet and plagioclase growth in pelitic schists: implications for thermobarometry and PT path determinations. J Metamorph Geol 8:683–696. doi:10.1111/j.1525-1314.1990.tb00495.x

    Article  Google Scholar 

  • Spillmann P, Büchi HJ (1993) The Pre-Alpine Basement of the Lower Austro-Alpine Nappes in the Bernina Massif (Grisons, Switzerland; Valtellina, Italy). In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic Geol. Alps, Springer, Berlin Heidelberg, pp 457–467

    Chapter  Google Scholar 

  • Štípská P, Powell R (2005) Does ternary feldspar constrain the metamorphic conditions of high-grade meta-igneous rocks? Evidence from orthopyroxene granulites, Bohemian Massif. J Metamorph Geol 23:627–647. doi:10.1111/j.1525-1314.2005.00600.x

    Article  Google Scholar 

  • Thöni M (1981) Degree and evolution of the alpine metamorphism in the Austroalpine unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr age determination on micas. Jahrb der Geol Bundesanstalt 124:111–174

    Google Scholar 

  • Tribuzio R, Thirlwall MF, Messiga B (1999) Petrology, mineral and isotope geochemistry of the Sondalo gabbroic complex (Central Alps, Northern Italy): implications for the origin of post-Variscan magmatism. Contrib Miner Petrol 136:48–62. doi:10.1007/s004100050523

    Article  Google Scholar 

  • Trümpy R (1975) Penninic-Austroalpine boundary in the Swiss Alps: a presumed former continental margin and its problems. Am J Sci 279:209–238

    Google Scholar 

  • Von Quadt A, Grünenfelder M, Büchi H (1994) U-Pb zircon ages from igneous rocks of the Bernina nappe system (Grisons, Switzerland). Schweiz Miner Petrogr Mitt 74:373–382

    Google Scholar 

  • Voshage H, Hofmann AW, Mazzucchelli M, Rivalenti G, Sinigoi S, Raczek I, Demarchi G (1990) Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature 347:731–736

    Article  Google Scholar 

  • Warren RG, Ellis DJ (1996) Mantle underplating, granite tectonics, and metamorphic P-T-t paths. Geology 24:663–666. doi:10.1130/0091-7613(1996)024<0663:mugtam>2.3.co;2

    Article  Google Scholar 

  • Waters DJ (2001) The significance of prograde and retrograde quartz-bearing intergrowth microstructures in partially melted granulite-facies rocks. Lithos 56:97–110. doi:10.1016/S0024-4937(00)00061-X

    Article  Google Scholar 

  • Wells PRA (1980) Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth Planet Sci Lett 46:253–265

    Article  Google Scholar 

  • White RW, Powell R (2002) Melt loss and the preservation of granulite facies mineral assemblages. J Metamorph Geol 20:621–632. doi:10.1046/j.1525-1314.2002.00206_20_7.x

    Google Scholar 

  • White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J Metamorph Geol 19:139–153. doi:10.1046/j.0263-4929.2000.00303.x

    Article  Google Scholar 

  • White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55

    Article  Google Scholar 

  • White RW, Pomroy NE, Powell R (2005) An in situ metatexite–diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. J Metamorph Geol 23:579–602. doi:10.1111/j.1525-1314.2005.00597.x

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527. doi:10.1111/j.1525-1314.2007.00711.x

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286. doi:10.1111/jmg.12071

    Article  Google Scholar 

  • Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (2004) Permo-Carboniferous magmatism and rifting in Europe: introduction. Geol Soc Lond Spec Publ 223:1–10. doi:10.1144/gsl.sp.2004.223.01.01

    Article  Google Scholar 

  • Zwart HJ (1962) On the determination of the polymetamorphic mineral associations, and its application to the bosost area (central Pyrenees). Geol Rundsch 52:38–65

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge J.C. Corona, T. Theye and G. Morvan for guidance on microprobe from Amsterdam, Stuttgart and Strasbourg, respectively. E. Skrzypek and R.F. Weinberg are thanked for informal comments and discussions, R. White and R. Braga for comments on the initial version of the manuscript. The article benefited from reviews from B. Cesare, an anonymous reviewer and from O. Müntener as editor.

Funding

Field work and analyses have been financed by an ExxonMobil research grant to G. Manatschal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Petri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 37557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petri, B., Mohn, G., Štípská, P. et al. The Sondalo gabbro contact aureole (Campo unit, Eastern Alps): implications for mid-crustal mafic magma emplacement. Contrib Mineral Petrol 171, 52 (2016). https://doi.org/10.1007/s00410-016-1263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1263-7

Keywords

Navigation