Log in

Impaired delay discounting and time sensitivity in methcathinone use disorder

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Substance use disorder (SUD) is characterized by continued drug use despite adverse consequences. Methcathinone is a new type of psychoactive substance that is associated with high excitement and impulsive behaviors. However, it is unclear if individuals with methcathinone use disorders (MCUD) are with impaired decision-making ability. We analyzed the task performance in 45 male MCUD subjects and 35 male matched healthy controls (HC) with intertemporal decision-making task. Constant sensitivity discounting model was used to estimate potential changes in both discounting rate and time sensitivity. The results showed that MCUD individuals exhibited a higher delay discounting rate (p = 0.003, Cohen’s d = 0.683) and reduced sensitivity to time (p < 0.001, Cohen’s d = 1.662). The delay discounting rate was correlated to the first age for drug use (r = − 0.41, p = 0.004), and the time sensitivity was negatively correlated with the duration of abstinence (r = − 0.31, p = 0.036). We conclude that MCUD individuals are with impaired decision-making ability and time perception disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Valente MJ, Guedes De Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88(1):15–45. https://doi.org/10.1007/s00204-013-1163-9

    Article  CAS  PubMed  Google Scholar 

  2. Juurmaa J et al (2016) Grey matter abnormalities in methcathinone abusers with a Parkinsonian syndrome. Brain Behav 6(11):1–8. https://doi.org/10.1002/brb3.539

    Article  Google Scholar 

  3. Chinese National Medical Products Administration (CNMPA) (2017) Annual Report of National Drug Abuse Monitoring

  4. Castiglioni S et al (2021) New psychoactive substances in several European populations assessed by wastewater-based epidemiology. Water Res. https://doi.org/10.1016/j.watres.2021.116983

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosen D (1993) Methcathinone. J Adolesc Health 14:426

    Article  CAS  PubMed  Google Scholar 

  6. Chintalova-Dallas R, Case P, Kitsenko N, Lazzarini Z (2009) Boltushka: a homemade amphetamine-type stimulant and HIV risk in Odessa, Ukraine. Int J Drug Policy 20(4):347–351. https://doi.org/10.1016/j.drugpo.2008.09.003

    Article  PubMed  Google Scholar 

  7. Goldstone M (1993) Cat: methcathinone-a new drug of abuse. JAMA 269:2508. https://jamanetwork.com/

  8. Stepens A et al (2014) The outcome of the movement disorder in methcathinone abusers: clinical, MRI and manganesemia changes, and neuropathology. Eur J Neurol 21(2):199–205. https://doi.org/10.1111/ene.12185

    Article  CAS  PubMed  Google Scholar 

  9. Balint EE, Falkay G, Balint GA (2009) Khat - a controversial plant. Wien Klin Wochenschr 121(19–20):604–614. https://doi.org/10.1007/s00508-009-1259-7

    Article  PubMed  Google Scholar 

  10. Glennon RA, Yousif M, Naiman N, Kalix P (1987) Methcathinone: a new and potent amphetamine-like agent. Pharmacol Biochem Behav 26(3):547–551. https://doi.org/10.1016/0091-3057(87)90164-x

    Article  CAS  PubMed  Google Scholar 

  11. Sikk K, Taba P (2015) Methcathinone ‘Kitchen Chemistry’ and permanent neurological damage. Int Rev Neurobiol 120:257–271. https://doi.org/10.1016/bs.irn.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  12. Krmpotich T, Mikulich-Gilbertson S, Sakai J, Thompson L, Banich MT, Tanabe J (2015) Impaired decision-making, higher impulsivity, and drug severity in substance dependence and pathological gambling. J Addict Med 9(4):273–280. https://doi.org/10.1097/ADM.0000000000000129

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smethells JR, Carroll ME (2015) Discrepant effects of acute cocaine on impulsive choice (delay discounting) in female rats during an increasing- and adjusting-delay procedure. Psychopharmacology 232(14):2455–2462. https://doi.org/10.1007/s00213-015-3874-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Green L, Myerson J (2004) A discounting framework for choice with delayed and probabilistic rewards. Psychol Bull 130(5):769–792. https://doi.org/10.1037/0033-2909.130.5.769

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bickel WK, Koffarnus MN, Moody L, Wilson AG (2014) The behavioral- and neuro-economic process of temporal discounting: a candidate behavioral marker of addiction. Neuropharmacology 76(Part B):518–527. https://doi.org/10.1016/j.neuropharm.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  16. MacKillop J, Amlung MT, Few LR, Ray LA, Sweet LH, Munafò MR (2011) Delayed reward discounting and addictive behavior: a meta-analysis. Psychopharmacology 216(3):305–321. https://doi.org/10.1007/s00213-011-2229-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moses TEH, Burmeister M, Greenwald MK (2020) Heroin delay discounting and impulsivity: modulation by DRD1 genetic variation. Addict Biol. https://doi.org/10.1111/adb.12777

    Article  PubMed  Google Scholar 

  18. Djamshidian A et al (2013) Increased reflection impulsivity in patients with ephedrone-induced Parkinsonism. Addiction 108(4):771–779. https://doi.org/10.1111/add.12080

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang HB, Zhao D, Liu YP, Wang LX, Yang B, Yuan TF (2021) Problem-solving deficits in methcathinone use disorder. Psychopharmacology 238(9):2515–2524. https://doi.org/10.1007/s00213-021-05874-z

    Article  CAS  PubMed  Google Scholar 

  20. Mazur JE, Commons ML, Nevin JA, Rachlin H (1987) Quantitative analyses of behavior: 5. The effect of delay and of intervening events on reinforcement value. Vol. 5. Erlbaum, Hillsdale, NJ, pp. 55–73

  21. Frank C, Koffarnus M, House L, Bickel W (2017) Accurate characterization of delay discounting: a multiple model approach using approximate Bayesian model selection and a unified discounting measure. J Exp Anal Behav 103(1):69–81. https://doi.org/10.1016/j.antiviral.2015.06.014.Chronic

    Article  Google Scholar 

  22. Myerson J, Green L, Morris J (2011) Modeling the effect of reward amount on probability discounting. J Exp Anal Behav 95(2):175–187. https://doi.org/10.1901/jeab.2011.95-175

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wittmann M, Paulus MP (2008) Decision making, impulsivity and time perception. Trends Cogn Sci 12(1):7–12. https://doi.org/10.1016/j.tics.2007.10.004

    Article  PubMed  Google Scholar 

  24. McKerchar T, Green L, Myerson J (2010) On the scaling interpretation of exponents in hyperboloid models of delay and probability discounting. Behav Process 84(1):1–7. https://doi.org/10.1038/jid.2014.371

    Article  CAS  Google Scholar 

  25. Wulff DU, van den Bos W (2018) Modeling choices in delay discounting. Psychol Sci 29(11):1890–1894. https://doi.org/10.1177/0956797616664342

    Article  PubMed  Google Scholar 

  26. Ebert JEJ, Prelec D (2007) The fragility of time: time-insensitivity and valuation of the near and far future. Manag Sci 53(9):1423–1438. https://doi.org/10.1287/mnsc.1060.0671

    Article  Google Scholar 

  27. Peters J, Miedl SF, Büchel C (2012) Formal comparison of dual-parameter temporal discounting models in controls and pathological gamblers. PLoS One. https://doi.org/10.1371/journal.pone.0047225

    Article  PubMed  PubMed Central  Google Scholar 

  28. A. P. Association (2013) American Psychiatric Association’s diagnostic and statistical manual. https://doi.org/10.1176/appi.books.9780890425596.744053

  29. Vehtari A, Gelman A, Gabry J (2016) Efficient implementation of leave-one-out cross-validation and WAIC for evaluating fitted Bayesian models. Stat Comput 27(5):1413–1432. https://doi.org/10.1007/s11222-016-9696-4

    Article  Google Scholar 

  30. Sikk K et al (2013) Manganese-induced Parkinsonism in methcathinone abusers: bio-markers of exposure and follow-up. Eur J Neurol 20(6):915–920. https://doi.org/10.1111/ene.12088

    Article  CAS  PubMed  Google Scholar 

  31. Karakula SL, Weiss RD, Griffin ML, Borges AM, Bailey AJ, McHugh RK (2016) Delay discounting in opioid use disorder: differences between heroin and prescription opioid users. Drug Alcohol Depend 169:68–72. https://doi.org/10.1016/j.drugalcdep.2016.10.009

    Article  PubMed  PubMed Central  Google Scholar 

  32. Robles E, Huang BE, Simpson PM, McMillan DE (2011) Delay discounting, impulsiveness, and addiction severity in opioid-dependent patients. J Subst Abuse Treat 41(4):354–362. https://doi.org/10.1016/j.jsat.2011.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jones CGA, Fearnley H, Panagiotopoulos B, Kemp RI (2015) Delay discounting, self-control, and substance use among adult drug court participants. Behav Pharmacol 26(5):447–459. https://doi.org/10.1097/FBP.0000000000000149

    Article  CAS  PubMed  Google Scholar 

  34. Zhang M et al (2019) Time perception deficits and its dose-dependent effect in methamphetamine dependents with short-term abstinence. Sci Adv. https://doi.org/10.1126/sciadv.aax6916

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82(4):463–496. https://doi.org/10.1037/h0076860

    Article  CAS  PubMed  Google Scholar 

  36. Lawrence JB, Stanford MS (1998) Impulsivity and time of day: effects on performance and cognitive tempo. Personal Individ Differ 26(2):199–207. https://doi.org/10.1016/S0191-8869(98)00022-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Trevor Robbins for his critical comments on this study.

Funding

The work was also supported by the Guangdong grant ‘Key technologies for the treatment of brain disorders’ (No. 2018B030331001), Hundred-Talent Fund from Shanghai Municipal Commission of Health (2018BR21), Medicine and Engineering Interdisciplinary Research Fund of Shanghai Jiao Tong University (ZH2018ZDA30), and innovative research team of high-level local universities in Shanghai.

Author information

Authors and Affiliations

Authors

Contributions

T-FY designed the study and provided the funding support; Z-YL, L-LR, and BY provided the experiment program and the statistical analysis strategy; TS, HZ, and L-XW collected the data; NZ and HZ searched the literature, analyzed the data, and wrote the manuscript; BS and YL provided analysis suggestion and revised the manuscript. All authors contributed to and have approved the final manuscript.

Corresponding authors

Correspondence to Li-Lin Rao, Bo Yang or Ti-Fei Yuan.

Ethics declarations

Conflict of interest

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 16 kb)

Supplementary file2 (PDF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, N., Zheng, H., Shi, T. et al. Impaired delay discounting and time sensitivity in methcathinone use disorder. Eur Arch Psychiatry Clin Neurosci 272, 1595–1602 (2022). https://doi.org/10.1007/s00406-021-01372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-021-01372-7

Keywords

Navigation