Log in

Primary stability of total hip stems: does surgical technique matter?

  • Hip Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

With this preliminary study we hypothesized a modified implantation technique may lead to higher primary stability than the conventional one.

Methods

In the conventional technique we used a sharp spoon to open the femoral cavity. Subsequently the opening was extended by increasing sizes of a sensing device to approve the final size. Finally, a bone compactor of the corresponding size was inserted in the cavity preparing it for implantation while compressing the surrounding cancellous bone. After initial opening of the femoral canal with a sharp spoon, the modified implantation technique was characterized by direct use of increasing sizes of bone compactors. A standardized procedure was implemented for micromotion analysis using LVDT's. Each specimen was positioned in a servo-hydraulic testing machine following a standardized test regime. A total of 1500 load cycles with a maximum hip reaction force of 1000 N were applied on each sample in three series of 500 cycles. The force was applied as a cyclic sinusoidal with a frequency of 1 Hz and a load ratio of R = 0.1.

Results

No significant differences of micromotion between implant and surrounding bone stock could be detected regarding conventional vs. modified implantation technique. However, independent of the surgical technique used, significant differences were observed for the operated side, i.e. backhand driving of right-handed surgeon resulted in higher interfacial micromotions at the left side.

Conclusion

The results did not support our hypothesis. However, the correlation found between operated side and surgeon's backhand driving as a potential risk for reduced primary stability should encourage further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Karrholm J, Garellick G, Herberts P (2005) The Swedish Hip Arthroplasty Register. Annual Report 2005. Sahlgrenska University Hospital, Göteborg, pp 2–82

    Google Scholar 

  2. Jasty M, Krushell R, Zalenski E, O'Connor D, Sedlacek R, Harris W (1993) The contribution of the nonporous distal stem to the stability of proximally porous coated canine femoral components. J Arthroplast 8(1):33–41

    Article  CAS  Google Scholar 

  3. Whiteside LA, White SE, McCarthy DS (1995) Effect of neck resection on torsional stability of cementless total hip replacement. Am J Orthop (Belle Mead NJ) 24(10):766–770

    CAS  Google Scholar 

  4. Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 208:108–113

    Google Scholar 

  5. Burke DW, O’Connor DO, Zalenski EB, Jasty M, Harris WH (1991) Micromotion of cemented and uncemented femoral components. J Bone Joint Surg Br 73(1):33–37

    Article  CAS  Google Scholar 

  6. Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS (1988) The anatomic basis of femoral component design. Clin Orthop Relat Res 235:148–165

  7. Kobayashi A, Donnelly WJ, Scott G, Freeman MA (1997) Early radiological observations may predict the long-term survival of femoral hip prostheses. J Bone Joint Surg Br 79(4):583–589

    Article  CAS  PubMed  Google Scholar 

  8. Walker PS, Mai SF, Cobb AG, Bentley G, Hua J (1995) Prediction of clinical outcome of THR from migration measurements on standard radiographs. J Bone Joint Surg Br 77(5):705–714

    Article  CAS  PubMed  Google Scholar 

  9. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871

    Article  CAS  Google Scholar 

  10. Herberts P, Malchau H (2000) Long-term registration has improved the quality of hip replacement: a review of the Swedish THR Register comparing 160,000 cases. Acta Orthop Scand 71(2):111–121. https://doi.org/10.1080/000164700317413067

    Article  CAS  Google Scholar 

  11. Stea S, Bordini B, Sudanese A, Toni A (2002) Registration of hip prostheses at the Rizzoli Institute. 11 years’ experience. Acta Orthop Scand Suppl 73(305):40–44. https://doi.org/10.1080/000164702760379549

    Article  CAS  PubMed  Google Scholar 

  12. Li M, Hu Y, **e J (2014) Analysis of the complications of the collum femoris preserving (CFP) prostheses. Acta Orthop Traumatol Turc 48(6):623–627. https://doi.org/10.3944/AOTT.2014.13.0060

    Article  PubMed  Google Scholar 

  13. You RJ, Zheng WZ, Chen K et al (2015) Long-term effectiveness of total hip replacement with the collum femoris preserving prosthesis. Cell Biochem Biophys 72(1):43–47. https://doi.org/10.1007/s12013-014-0401-y

    Article  CAS  PubMed  Google Scholar 

  14. Hutt J, Harb Z, Gill I, Kashif F, Miller J, Dodd M (2014) Ten year results of the collum femoris preserving total hip replacement: a prospective cohort study of seventy five patientsInt. Orthop 38(5):917–922. https://doi.org/10.1007/s00264-013-2212-y

    Article  Google Scholar 

  15. Ghera S, Bisicchia S (2013) The collum femoris preserving stem: early results. Hip Int 23(1):27–32. https://doi.org/10.5301/HIP.2013.10718

    Article  PubMed  Google Scholar 

  16. Lazarinis S, Mattsson P, Milbrink J, Mallmin H, Hailer NP (2013) A prospective cohort study on the short collum femoris-preserving (CFP) stem using RSA and DXA. Primary stability but no prevention of proximal bone loss in 27 patients followed for 2 years. Acta Orthop 84(1):32–39. https://doi.org/10.3109/17453674.2013.765623

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li M, Hu Y, Li K, Liao Q, Wen T, Zhong D (2012) Mid-term effectiveness of total hip arthroplasty with collum femoris preserving prosthesis. Zhongguo **u Fu Chong Jian Wai Ke Za Zhi 26(8):897–901

    PubMed  Google Scholar 

  18. Shang XF, He R, Lu YF et al (2010) Total hip replacement with collum femoris preserving for the treatment of advanced stage of femoral head necrosis of young patients: a report of results of more than five years follow-up. Zhonghua Wai Ke Za Zhi 48(17):1298–1300

    PubMed  Google Scholar 

  19. Ding S, Zheng K (2010) Artificial total hip arthroplasty with collum femoris preserving for treating hip joint. Zhongguo **u Fu Chong Jian Wai Ke Za Zhi 24(1):1–4

    PubMed  Google Scholar 

  20. Gill IR, Gill K, Jayasekera N, Miller J (2008) Medium term results of the collum femoris preserving hydroxyapatite coated total hip replacement. Hip Int 18(2):75–80

    Article  CAS  PubMed  Google Scholar 

  21. Pons M (2010) Learning curve and short-term results with a short-stem CFP system. Hip Int 20(Suppl 7):S52–S57

    Article  PubMed  Google Scholar 

  22. Katzer A, Niedermauntel WP, Haack C, Rump J (2011) Mittelfristige Ergebnisse mit der CFP- prothese. Orthopädische Praxis 47(8):377–380

    Google Scholar 

  23. Kress AM, Schmidt R, Nowak TE et al (2012) Stress-related femoral cortical and cancellous bone density loss after collum femoris preserving uncemented total hip arthroplasty: a prospective 7-year follow-up with quantitative computed tomography. Arch Orthop Trauma Surg 132(8):1111–1119. https://doi.org/10.1007/s00402-012-1537-0

    Article  PubMed  Google Scholar 

  24. Nowak M, Nowak TE, Schmidt R, Forst R, Kress AM, Mueller LA (2011) Prospective study of a cementless total hip arthroplasty with a collum femoris preserving stem and a trabeculae oriented pressfit cup: minimun 6-year follow-up. Arch Orthop Trauma Surg 131(4):549–555. https://doi.org/10.1007/s00402-010-1189-x

    Article  PubMed  Google Scholar 

  25. Briem D, Schneider M, Bogner N et al (2011) Mid-term results of 155 patients treated with a collum femoris preserving (CFP) short stem prosthesis. Int Orthop 35(5):655–660. https://doi.org/10.1007/s00264-010-1020-x

    Article  PubMed  Google Scholar 

  26. Falez F, Casella F, Papalia M (2015) Current concepts, classification, and results in short stem hip arthroplasty. Orthopedics 38(3 Suppl):S6–S13. https://doi.org/10.3928/01477447-20150215-50

    Article  PubMed  Google Scholar 

  27. Labek G, Thaler M, Janda W, Agreiter M, Stöckl B (2011) Revision rates after total joint replacement: cumulative results from worldwide joint register datasets. J Bone Joint Surg Br 93(3):293–297. https://doi.org/10.1302/0301-620X.93B3.25467

    Article  CAS  PubMed  Google Scholar 

  28. van Oldenrijk J, Molleman J, Klaver M, Poolman RW, Haverkamp D (2014) Revision rate after short-stem total hip arthroplasty: a systematic review of 49 studies. Acta Orthop 85(3):250–258. https://doi.org/10.3109/17453674.2014.908343

    Article  PubMed  PubMed Central  Google Scholar 

  29. Whiteside LA, White SE, Engh CA, Head W (1993) Mechanical evaluation of cadaver retrieval specimens of cementless bone-ingrown total hip arthroplasty femoral components. J Arthroplast 8(2):147–155

    Article  CAS  Google Scholar 

  30. Bergmann G, Graichen F, Rohlmann A (1995) Is staircase walking a risk for the fixation of hip implants? J Biomech 28(5):535–553

    Article  CAS  PubMed  Google Scholar 

  31. Harman MK, Toni A, Cristofolini L, Viceconti M (1995) Initial stability of uncemented hip stems: an in-vitro protocol to measure torsional interface motion. Med Eng Phys 17(3):163–171

    Article  CAS  PubMed  Google Scholar 

  32. Götze C, Steens W, Vieth V, Poremba C, Claes L, Steinbeck J (2002) Primary stability in cementless femoral stems: custom-made versus conventional femoral prosthesis. Clin Biomech Bristol Avon 17(4):267–273

    Article  Google Scholar 

  33. Walker PS, Schneeweis D, Murphy S, Nelson P (1987) Strains and micromotions of press-fit femoral stem prostheses. J Biomech 20(7):693–702

    Article  CAS  PubMed  Google Scholar 

  34. Bühler DW, Berlemann U, Lippuner K, Jaeger P, Nolte LP (1997) Three-dimensional primary stability of cementless femoral stems. Clin Biomech (Bristol Avon) 12(2):75–86

    Article  Google Scholar 

  35. Maloney WJ, Jasty M, Burke DW, O’Connor DO, Zalenski EB, Bragdon C, Harris WH (1989) Biomechanical and histologic investigation of cemented total hip arthroplasties. A study of autopsy-retrieved femurs after in vivo cycling. Clin Orthop Relat Res 249:129–40

    Google Scholar 

  36. Hua J, Walker PS (1994) Relative motion of hip stems under load. An in vitro study of symmetrical, asymmetrical, and custom asymmetrical designs. J Bone Joint Surg Am 76(1):95–103

    Article  CAS  Google Scholar 

  37. Harris WH, Mulroy RD Jr., Maloney WJ, Burke DW, Chandler HP, Zalenski EB (1991) Intraoperative measurement of rotational stability of femoral components of total hip arthroplasty. Clin Orthop Relat Res 266:119–26

    Google Scholar 

  38. Nunn D, Freeman MA, Tanner KE, Bonfield W (1989) Torsional stability of the femoral component of hip arthroplasty. Response to an anteriorly applied load. J Bone Joint Surg Br 71(3):452–455

    Article  CAS  PubMed  Google Scholar 

  39. Stranne SK, Callaghan JJ, Fyda TM, Fulghum CS, Glisson RR, Weinerth JL, Seaber AV (1992) The effect of extracorporeal shock wave lithotripsy on the prosthesis interface in cementless arthroplasty. Evaluation in a rabbit model. J Arthroplast 7(2):173–179

    Article  CAS  Google Scholar 

  40. Monti L, Cristofolini L, Toni A, Ceroni RG (2001) In vitro testing of the primary stability of the VerSys enhanced taper stem: a comparative study in intact and intraoperatively cracked femora. Proc Inst Mech Eng H 215(1):75–83

    Article  CAS  PubMed  Google Scholar 

  41. Roetert EP, Brody H, Dillman CJ, Groppel JL, Schultheis JM (1995) The biomechanics of tennis elbow. An integrated approach. Clin Sports Med 14(1):47–57

    CAS  PubMed  Google Scholar 

  42. Groppel JL (1983) Teaching one-and-two-handed backhand drives: biomechanical considerations. J Phys Educ Recreat Danc 44:23–25. https://doi.org/10.1080/07303084.1983.10630451

    Article  Google Scholar 

  43. Mason E (1968) New tennis progressions. J Phys Educ Recreat Danc 39:23.38

    Google Scholar 

  44. Blackwell JT, Cole KJ (1994) Wrist kinematics differ in expert and novice tennis players performing the backhand stroke: implications for tennis elbow. J Biomech 27(5):509–516

    Article  CAS  Google Scholar 

  45. Berzins A, Sumner DR, Andriacchi TP, Galante JO (1993) Stem curvature and load angle influence the initial relative bone-implant motion of cementless femoral stems. J Orthop Res 11(5):758–769

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Waldemar Link®, Hamburg, Germany with donation of short femoral stems and both by the Department of Anatomy, Rostock University, Germany and Department of Anatomy, Muenster University, Germany with donation of specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Steens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steens, W., Souffrant, R., Kluess, D. et al. Primary stability of total hip stems: does surgical technique matter?. Arch Orthop Trauma Surg 139, 569–575 (2019). https://doi.org/10.1007/s00402-019-03124-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-019-03124-8

Keywords

Navigation