Log in

Viscosity and dynamics of nanorod (carbon nanotubes, cellulose whiskers, stiff polymers and polymer fibers) suspensions

  • Review
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The zero shear viscosity and the dynamic behaviors of different nanorod dispersions (carbon nanotubes (CNTs), cellulose whiskers, polymer nanofibers, crosslinked polymer nanofibers, and stiff polymers such as poly(γ-benzyl-α-l-glutamate) (PBLG)) were compared and discussed from literature data. Their Brownian dynamic behaviors have always been discussed in the frame of the Doi–Edwards theory. In agreement with this theory, the straight rigid rods (CNTs, cellulose whisker, polymer nanofibers) obey a master curve in the reduced viscosity (or rotary diffusivity) c power laws on viscosity (η 0 ∝ φ 3) and diffusivity (D r ∝ ϕ −2). On the contrary, stiff polymer chains and crosslinked polymer fibers at temperature above T g exhibit different and two distinct dynamic behaviors. Despite their deviation from the ideal rigidity, surprisingly it can be noted that stiff polymers such as PBLG have been extremely used in the literature to verify the Doi–Edwards theory. Finally, flexible crosslinked chains at T > T g , do not obey the Doi–Edwards theory, and their dynamics are close to the physics of polymer solutions in terms of power laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016

    Article  CAS  Google Scholar 

  • Bitsanis I, Davis HT, Tirrell M (1990) Brownian dynamics of nondilute solutions of rodlike polymers. II. High concentrations. Macromolecules 23:1157–1165

    Article  CAS  Google Scholar 

  • Bitsanis I, Davis HT, Tirrell M (1988) Brownian dynamics of non-dilute solutions of rod-like polymers. I. Low concentrations. Macromolecules 21:2824–2835

    Article  Google Scholar 

  • Boissé S, Rieger J, Belal K, Di-Cicco A, Beaunier P, Li MH, Charleux B (2010) Amphiphilic block copolymer nano-fibers via RAFT-mediated polymerization in aqueous dispersed system. Chem Commun 46:1950–1952

    Article  Google Scholar 

  • Boissé S, Rieger J, Pembouong G, Beaunier P, Charleux B (2011) Influence of the stirring speed and CaCl2 concentration on the nano-object morphologies obtained via RAFT-mediated aqueous emulsion polymerization in the presence of a water-soluble macroRAFT agent. J Polym Sci: Part A: Polym Chem 49:3346–3354

    Article  Google Scholar 

  • Bu ZB, Russo PS, Tipton DL (1994) Negulescu II, self-diffusion of rodlike polymers in isotropic solutions. Macromolecules 27:6871–6882

    Article  CAS  Google Scholar 

  • Cobb PD, Butler JE (2006) Simulations of concentrated suspensions of semirigid fibers: effect of bending on the rotational diffusivity. Macromolecules 39:886–892

    Article  CAS  Google Scholar 

  • DeLong LM, Russo PS (1991) Thermodynamic and dynamic behavior of semiflexible polymers in the isotropic phase. Macromolecules 24:6139–6155

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1978a) Dynamics of rod-like macromolecules in concentrated solution. Part 1. J Chem Soc Faraday Trans 2(74):560–570

    Google Scholar 

  • Doi M, Edwards SF (1978b) Dynamics of rod-like macromolecules in concentrated solutions. Part 2. Chem Soc Faraday Trans 74:918–932

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) Oxford University Press, London

    Google Scholar 

  • Fixman M (1985) Dynamics of semidilute polymer rods: an alternative to cages. Phys Rev Lett 55:2429–2432

    Article  CAS  Google Scholar 

  • Fry D, Langhorst B, Wang H, Becker ML, Bauer BJ, Grulke EA, Hobbie EK (2006) Rheo-optical studies of carbon nanotube suspensions. J Chem Phys 054703:124

    Google Scholar 

  • Hobbie EK (2010) Shear rheology of carbon nanotube suspensions. Rheol Acta 49:323–334

    Article  CAS  Google Scholar 

  • Hobbie EK, Fry DJ (2006) Non equilibrium phase diagram of sticky nanotube suspensions. Phys Rev Lett 036101:97

    Google Scholar 

  • Immaneni A, McHugh AJ (1998) The effect of concentration, temperature, and molecular weight on the dynamics of rigid-rod molecules in semi-dilute solutions. J Polym Phys: Part B: Polym Phys 36:181–190

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Chapter 6: particulate suspensions. Oxford University Press, London, pp 263–323

    Google Scholar 

  • Ma AWK, Mackley MR, Rahatekar SS (2007) Experimental observation on the flow-induced assembly of carbon nanotube suspensions to form helical bands. Rheol Acta 46:979–987

    Article  CAS  Google Scholar 

  • Ma AWK, Chinesta F, Mackley MR (2008) The rheology and modelling of chemically treated carbon nanotubes suspensions. J Rheology 52:1311–1330

    Article  CAS  Google Scholar 

  • Marceau S, Fulchiron R, Dubois Ph, Cassagnau P (2009) Viscoelasticity of Brownian carbon nanotubes in PDMS semidilute regime. Macromolecules 42:1433–1438

    Article  CAS  Google Scholar 

  • Mead DW, Larson RG (1990) Rheoptical study of isotropic solutions of stiff polymers. Macromolecules 23:2524–2533

    Article  CAS  Google Scholar 

  • Moreira L, Fulchiron R, Seytre G, Dubois P, Cassagnau P (2010) Aggregation of carbon nanotubes in semidilute suspension. Macromolecules 43:1467–1472

    Article  CAS  Google Scholar 

  • Mori Y, Ookubo N, Hayakawa R (1982) Microstructural regimes of colloidal rod suspensions, gels, and glasses. J Polym Sci Part B: Polym Phys 20:2111–2124

    Article  CAS  Google Scholar 

  • Nguyen LTH, Chen S, Elumalai NK, Prabhakaran MP, Zong Y, Vijila C (2012) Biological, chemical and electronic applications of nanofibers. Macromol Mater Eng. doi:10.1002/mame.201200143

    Google Scholar 

  • Phalakornkul JK, Gast AP, Pecora R (1999) Rotational and translational dynamics of rodlike polymers: a combined transient electric birefringence and dynamic light scattering study. Macromolecules 32:3122–3135

    Article  CAS  Google Scholar 

  • Philipse AP, Wierenga AM (1998) On the density and structure formation in gels and clusters of colloidal rods and fibers. Langmuir 14:49–54

    Article  CAS  Google Scholar 

  • Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6:1391–1400

    Article  CAS  Google Scholar 

  • Teraoka I, Hayakawa R (1989) Theory of dynamics of entangled rod-like polymers by use of a mean-field. Green function formulation. II. Rotational diffusion. J Chem Phys 91:2643–2648

    Article  CAS  Google Scholar 

  • Tracy MA, Pecora R (1992) Dynamics of rigid and semirigid rodlike polymers. Annu Rev Phys Chem 43:525–527

    Article  CAS  Google Scholar 

  • Wierenga AM, Philipse AP (1998) Low-shear viscosity of isotropic dispersions of (Brownian) rods and fibres; a review of theory and experiments. Colloid Surface Physicochem Eng Aspect 137:355–372

    Article  CAS  Google Scholar 

  • Wilkins GMH, Spicer PT, Solomon MJ (2009) Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses. Langmuir 25:8951–8959

    Article  CAS  Google Scholar 

  • Zhang X, Boissé S, Zhang W, Beaunier P, D’Agosto F, Rieger J, Charleux B (2011) From soluble macromolecules to block copolymer nano-objects in one step. Macromolecules 44:4149–4158

    Article  CAS  Google Scholar 

  • Zhang W, Charleux B, Cassagnau P (2012) Viscoelastic properties of water suspensions of polymer nanofibers synthesized via RAFT-mediated emulsion polymerization. Macromolecules 45:5273–5280

    Article  CAS  Google Scholar 

  • Zhang W, Charleux B, Cassagnau P (2013) Dynamic behavior of crosslinked amphiphilic block copolymer nanofibers dispersed in liquid poly(ethylene oxide) below and above their glass transition temperature. Soft Matter 9:2197–2205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Cassagnau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassagnau, P., Zhang, W. & Charleux, B. Viscosity and dynamics of nanorod (carbon nanotubes, cellulose whiskers, stiff polymers and polymer fibers) suspensions. Rheol Acta 52, 815–822 (2013). https://doi.org/10.1007/s00397-013-0719-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0719-1

Keywords

Navigation