Log in

Temperature dependent micellar study of streptomycin sulfate in aqueous amino acid solutions: physicochemical approach

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An investigation has been carried out to gain insight of the micellization behavior of streptomycin sulfate, a surface-active drug, in aqueous medium for six amino acids (proline, glutamic acid, asparagine, glycine, histidine, and aspartic acid) at 0.01 mol·kg−1. The thermodynamic aspects were analyzed using three techniques: conductivity, density, and speed of sound measurements at various temperatures (293.15–313.15 K) along with UV–Vis spectroscopy at a specific temperature of 298.15 K. By employing conductometry, valuable data on micellization and the degree of ionization of the drug were obtained. The impact of amino acids on two essential parameters, the critical micellar concentration (CMC) and thermodynamic aspects of drug micellization, have been examined. Interestingly, the presence of amino acids was found to enhance the drug tendency to form micelles, as depicted by the CMC variations. The study also investigated the suitability of UV–Vis spectroscopy with pyrene as a probe to explore the interactions between amino acids and the drug. Further, density and speed of sound analysis provides information about strong interactions in streptomycin sulfate-amino acids-water system. The results revealed significant changes in the micropolarity and micelle assembly due to these interactions in aforesaid system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

This declaration is not applicable.

References

  1. Buettner CS, Cognigni A, Schroder C, Bica-Schroder K (2022) Surface-active ionic liquids: a review. J Mol Liq 347:118160. https://doi.org/10.1016/j.molliq.2021.118160

    Article  CAS  Google Scholar 

  2. Shaban SM, Kang J, Kim D (2020) Surfactants: recent advances and their applications. Composites Comm 22:100537. https://doi.org/10.1016/j.coco.2020.100537

    Article  Google Scholar 

  3. Xu H, **e F, Lu Y, Wei P, Cai J (2021) Fluorescent amphiphilic quaternized β-chitin: antibacterial mechanism and cell imaging. ACS App Bio Materials 4(7):5461–5470. https://doi.org/10.1021/acsabm.1c00179

    Article  CAS  Google Scholar 

  4. Shen T, Mao S, Ding F, Han T, Gao M (2021) Selective adsorption of cationic/anionic tritoluene dyes on functionalized amorphous silica: a mechanistic correlation between the precursor, modifier and adsorbate. Colloids Surf A 618:126435. https://doi.org/10.1016/j.colsurfa.2021.126435

    Article  CAS  Google Scholar 

  5. Khan A, Yasa SR, Gusain R, Khatri OP (2020) Oil-miscible, halogen-free, and surfaceactive lauryl sulphate derived ionic liquids for enhancement of tribological properties. J Mol Liq 318:114005. https://doi.org/10.1016/j.molliq.2020.114005

    Article  CAS  Google Scholar 

  6. Akl ZF, Hegazy MA (2020) Selective cloud point extraction of thorium (IV) using tetraazonium based ionic liquid. J Environ Chem Eng 8(5):104185. https://doi.org/10.1016/j.jece.2020.104185

    Article  CAS  Google Scholar 

  7. Muzzalupo R, Perez L, Pinazo A, Tavano L (2017) Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: skin penetration behavior and controlled drug release. Int J Pharm 529:245–252. https://doi.org/10.1016/j.ijpharm.2017.06.083

    Article  CAS  PubMed  Google Scholar 

  8. Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D (2019) Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery. ACS Nano 13:3754–3782. https://doi.org/10.1021/acsnano.8b07858

    Article  CAS  PubMed  Google Scholar 

  9. Shen T, Zhou S, Ruan J, Chen X, Liu X, Ge X, Qian C (2021) Recent advances on micellar catalysis in water. Adv Colloid Interf Sci 287:102299. https://doi.org/10.1016/j.cis.2020.102299

    Article  CAS  Google Scholar 

  10. Chauhan S, Kumar A, Kaur M, Chauhan MS, (2017) Physicochemical and spectroscopic approach to analyse the behaviour of surface-active ionic liquid and conventional surfactant in aqueous glycine. J Surfact Deterg 20:1129–1139. https://doi.org/10.1007/s11743-017-1993-1

    Article  CAS  Google Scholar 

  11. Chauhan S, Singh K, Sundaresan CN (2018) Physico-chemical characterization of drug–bio-surfactant micellar system: a road for develo** better pharmaceutical formulations. J Mol Liq 266:692–702. https://doi.org/10.1016/j.molliq.2018.07.008

    Article  CAS  Google Scholar 

  12. Likhanova NV, Lozada PA, Xometl O, Cocoletzi HH, Lijanova IV, Morales JA, Aguila JEC (2019) Effect of organic anions on ionic liquids as corrosion inhibitors of steel in sulfuric acid solution. J Mol Liq 279:267–278. https://doi.org/10.1016/j.molliq.2019.01.126

    Article  CAS  Google Scholar 

  13. Vinarov Z, Katev V, Radeva D, Tcholakova S, Denkov ND (2018) Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure. Drug Dev Indus Pharm 44:677–686. https://doi.org/10.1080/03639045.2017.1408642

    Article  CAS  Google Scholar 

  14. Pillai P, Maiti M, Mandal A (2022) Mini-review on recent advances in the application of surface-active ionic liquids: petroleum industry perspective. Energy Fuel 36:7925–7939. https://doi.org/10.1021/acs.energyfuels.2c00964

    Article  CAS  Google Scholar 

  15. Zembyla M, Murray BS, Sarkar A (2020) Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: a review.Trends Food Sci Tech 104:49–59. https://doi.org/10.1016/j.tifs.2020.07.028

  16. Vieira MO, Monteiro WF, Neto BS, Ligabue R, Chaban VV, Einloft S (2018) Surface active ionic liquids as catalyst for CO2 conversion to propylene carbonate. Catal Lett 148:108–118. https://doi.org/10.1007/s10562-017-2212-4

    Article  CAS  Google Scholar 

  17. Pei Y, Hao L, Ru J, Zhao Y, Wang H, Bai G, Wang J (2018) The self-assembly of ionic liquids surfactants in ethanolammonium nitrate ionic liquid. J Mol Liq 254:130–136. https://doi.org/10.1016/j.molliq.2018.01.095

    Article  CAS  Google Scholar 

  18. Kumar A, Ting YP (2016) Streptomycin favors biofilm formation by altering cell surface properties. Appl Microbiol Biotechnol 100:8843–8853. https://doi.org/10.1007/s00253-016-7793-0

    Article  CAS  PubMed  Google Scholar 

  19. Chauhan S, Kaur M (2017) Modulation of aggregation behaviour of anionic surfactant in the presence of aqueous quaternary ammonium salts. J Surfactants Deterg 20:599–607. https://doi.org/10.1007/s11743-017-1949-5

    Article  CAS  Google Scholar 

  20. Sharma S, Kumar K, Chauhan S, Chauhan MS (2020) Conductometric and spectrophotometric studies of self-aggregation behavior of streptomycin sulphate in aqueous solution: effect of electrolytes. J Mol Liq 279:111782. https://doi.org/10.1016/j.molliq.2019.111782

    Article  CAS  Google Scholar 

  21. Sharma S, Kumar K, Chauhan S (2021) Role of electrolyte-drug interactions in solution behavior of antibiotic drug streptomycin sulphate: density, speed of sound and viscosity studies. Chem Data Coll 34:100745. https://doi.org/10.1016/j.cdc.2021.100745

    Article  CAS  Google Scholar 

  22. Sharma S, Kumar K, Chauhan S (2020) Micellization properties of antihistaminic drug diphenhydramine.HCl in aqueous electrolytic solution: conductometric and spectroscopic studies. J Mol Liq 300:112306. https://doi.org/10.1016/j.molliq.2019.112306

  23. Schreier S, Malheiros SVP, Paula E (2002) Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim Biophys Acta 1508(1–2):210–234. https://doi.org/10.1016/S0304-4157(00)00012-5

  24. Sajid M, Khan MSA, Cameotra SS, Al-Thubiani AS (2020) Biosurfactants: potential applications as immunomodulator drugs. Immunol Lett 223:71–77. https://doi.org/10.1016/j.imlet.2020.04.003

    Article  CAS  PubMed  Google Scholar 

  25. Chauhan S, Kumari S, Kumar K, Umar A, Sundaresan CN, Gupta R (2015) Influence of iso-perthiocyanic acid and temperature on the aggregation properties of sodium dodecylsulphate in dimethylsulphoxide. J Mol Liq 211:338–345. https://doi.org/10.1016/j.molliq.2015.07.017

    Article  CAS  Google Scholar 

  26. Farooq U, Ali A, Patel R, Malik NAA (2017) Interaction between amphiphilic antidepressant drug nortryptyline hydrochloride and conventional cationic surfactants: a physicochemical study. J Mol Liq 233:310–318. https://doi.org/10.1016/j.molliq.2017.03.032

    Article  CAS  Google Scholar 

  27. Akram M, Osama M, Lal H, Salim M, Hashmi MA, Din K (2023) Biophysical investigation of the interaction between NSAID ibuprofen and cationic biodegradable Cm-E2O2-Cm gemini surfactants. J Mol Liq 370:120972. https://doi.org/10.1016/j.molliq.2022.120972

    Article  CAS  Google Scholar 

  28. Sarangi MK, Padhi S, Patel SD, Rath G, Nanda SS, Yi DK (2022) Theranostic efficiency of biosurfactants against COVID-19 and similar viruses – a review. J Drug Del Sci Tech 76:103764. https://doi.org/10.1016/j.jddst.2022.103764

    Article  PubMed  Google Scholar 

  29. Ali MS, Al-Lohedan HA (2023) Interactions of lysozyme with hydrophobic and hydrophilic non-steroidal anti-inflammatory drugs: spectroscopic and molecular docking analyses. J Mol Liq 390:123020. https://doi.org/10.1016/j.molliq.2023.123020

    Article  CAS  Google Scholar 

  30. Ali MS, Waseem M, Subbarao N, Al-Lohedan HA (2021) Dynamic interaction between lysozyme and ceftazidime: experimental and molecular simulation approaches. J Mol Liq 328:115412. https://doi.org/10.1016/j.molliq.2021.115412

    Article  CAS  Google Scholar 

  31. Kumar D, Rub MA (2019) Role of cetyltrimethylammonium bromide (CTAB) surfactant micelles on kinetics of [Zn(II)-Gly-Leu]+ and ninhydrin. J Mol Liq 274:639–645. https://doi.org/10.1016/j.molliq.2018.11.035

    Article  CAS  Google Scholar 

  32. Azum N, Rub MA, Asiri AM (2019) Bile salt–bile salt interaction in mixed monolayer and mixed micelle formation. J Chem Thermodyn 128:406–414. https://doi.org/10.1016/j.jct.2018.08.030

    Article  CAS  Google Scholar 

  33. Azum N, Rub MA, Asiri AM (2014) Energetics of clouding phenomenon in amphiphilic drug imipramine hydrochloride with pharmaceutical excipients. Pharm Chem J 48:201–208. https://doi.org/10.1007/s11094-014-1077-8

    Article  CAS  Google Scholar 

  34. Rub MA, Azum N, Khan SB, Marwani HM, Asiri AM (2015) Micellization behavior of amphiphilic drug promazine hydrochloride and sodium dodecyl sulfate mixtures at various temperatures: effect of electrolyte and urea. J Mol Liq 212:532–543. https://doi.org/10.1016/j.molliq.2015.09.049

    Article  CAS  Google Scholar 

  35. Yang Y, Zhang Q, Wang T, Yang Y (2013) Determination of the critical micelle concentration of sodium dodecyl sulphate in aqueous solution in the presence of an organic additive of acetonitrile by conductometry and an inorganic additive of phosphate by fluorometry. Asian J Chem 25:6657–6660. https://doi.org/10.14233/ajchem.2013.14403

  36. Chauhan S, Rana DS, Akash RK, Chauhan MS, Umar A (2012) Temperature-dependant volumetric and compressibility studies of drug-surfactant interactions in dimethylsulfoxide (DMSO) solutions. Adv Sci Lett 5:178–181. https://doi.org/10.1166/asl.2012.3252

    Article  CAS  Google Scholar 

  37. Ren Z, Luo Y (2013) Dynamic interfacial tension behavior of alkyl amino sulfonate in crude oil-brine system. Tenside Surfactants Deterg 50:369–375. https://doi.org/10.3139/113.110269

    Article  CAS  Google Scholar 

  38. Chauhan S, Chaudhary P, Sharma K, Kumar K (2013) Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug. Chem Pap 67:1442–1452. https://doi.org/10.2478/s11696-013-0404-y

    Article  CAS  Google Scholar 

  39. Castellanos IJ, Castellanos R, Griebenow K (2003) Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J Controll Release 88:135–145. https://doi.org/10.1016/s0168-3659(02)00488-1

    Article  CAS  Google Scholar 

  40. Alam MS, Mandal A, Mandal AB (2011) Surface and micellar properties of some amphiphilic drugs in the presence of additives. J Chem Eng Data 56:1540–1546. https://doi.org/10.1021/je700045r

    Article  CAS  Google Scholar 

  41. Singh H, Richu BA, Majid Q, Kumar A (2023) Investigation of molecular interactions of streptomycin sulphate with aqueous L-aspartic acid through volumetric, ultrasonic and viscometric approach. J Mol Liq 382:121885. https://doi.org/10.1016/j.molliq.2023.121885

    Article  CAS  Google Scholar 

  42. Sharma T, Kumar A, Shah SS, Bamezai RK (2020) Analysis of interactions between streptomycin sulphate and aqueous food acids (L-ascorbic acid and citric acid): physico-chemical and spectroscopic insights. J Chem Therm 151:106207. https://doi.org/10.1016/j.jct.2020.106207

    Article  CAS  Google Scholar 

  43. Chauhan S, Singh K, Kumar K, Neelakantan SC, Kumar G (2016) Drug–amino acid interactions in aqueous medium: volumetric, compressibility, and viscometric studies. J Chem Eng Data 61(2):788–796. https://doi.org/10.1021/acs.jced.5b00549

    Article  CAS  Google Scholar 

  44. Malik NA (2016) Solubilization and interaction studies of bile salts with surfactants and drugs: a review. Appl Biochem Biotechnol 179:179–201. https://doi.org/10.1007/s12010-016-1987-x

  45. Rahman M, Khan MA, Rub MA, Hoque MA (2016) Effect of temperature and salts on the interaction of cetyltrimethylammonium bromide with ceftriaxone sodium trihydrate drug. J Mol Liq 223:716–724. https://doi.org/10.1016/j.molliq.2016.08.049

    Article  CAS  Google Scholar 

  46. Azum N, Rub MA, Asiri AM (2017) Self-association and micro-environmental properties of sodium salt of ibuprofen with BRIJ-56 under the influence of aqueous/urea solution. J Dispersion Sci Technol 38:96–104. https://doi.org/10.1080/01932691.2016.1144197

    Article  CAS  Google Scholar 

  47. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Bio 157:105–132. https://doi.org/10.1016/0022-2836(82)90515-0

    Article  CAS  Google Scholar 

  48. Usman M, Abid M, Mansha A, Siddiq M (2018) Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate. Thermochim Acta 573:18–24. https://doi.org/10.1016/j.tca.2013.08.014

    Article  CAS  Google Scholar 

  49. Kumar K, Patial BS, Chauhan S (2015) Conductivity and fluorescence studies on the micellization properties of sodium cholate and sodium deoxycholate in aqueous medium at different temperatures: effect of selected amino acids. J Chem Thermodyn 82:25–33. https://doi.org/10.1016/j.jct.2014.10.014

    Article  CAS  Google Scholar 

  50. Chauhan S, Sharma K (2014) Effect of temperature and additives on the critical micelle concentration and thermodynamics of micelle formation of sodium dodecyl benzene sulfonate and dodecyltrimethylammonium bromide in aqueous solution: a conductometric study. J Chem Thermodyn 71:205–211. https://doi.org/10.1016/j.jct.2013.12.019

    Article  CAS  Google Scholar 

  51. Yang YY, Zhang Q, Wang T, Yang YY (2013) Determination of the critical micelle concentration of sodium dodecyl sulphate in aqueous solution in the presence of an organic additive of acetonitrile by conductometry and an inorganic additive of phosphate by fluorometry. Asian J Chem 25:6657–6660. https://doi.org/10.14233/ajchem.2013.14403

  52. Patra N, Mal A, Dey A, Ghosh S (2019) Influence of solvent, electrolytes, β-CD, OTAB on the krafft temperature and aggregation of sodium tetradecyl sulfate. J Mol Liq 280:307–313. https://doi.org/10.1016/j.molliq.2019.02.002

    Article  CAS  Google Scholar 

  53. Chauhan S, Sharma K, Rana DS, Kumar G, Umar A (2012) Conductance, apparent molar volume and compressibility studies of cetyltrimethylammonium bromide in aqueous solution of leucine. J Mol Liq 175:103–110. https://doi.org/10.1016/j.molliq.2012.07.029

    Article  CAS  Google Scholar 

  54. Pal A, Chaudhary S (2013) Effect of hydrophilic ionic liquid on aggregation behavior of aqueous solutions of sodium dodecylsulfate (SDS). Fluid Phase Equilib 352:42–46. https://doi.org/10.1016/j.fluid.2013.05.009

    Article  CAS  Google Scholar 

  55. Chauhan S, Negi K (2023) Insight of molecular interactions between short-chain tetraalkylammonium bromides and cetyltrimethylammonium bromide: a spectroscopic and thermodynamic approach. J Surfactants Deterg 26:505–515. https://doi.org/10.1002/jsde.12682

    Article  CAS  Google Scholar 

  56. Chauhan S, Kumari S, Singh K (2017) Conductometric and fluorescence probe analysis on molecular interactions between cationic surfactants in aqueous medium of glycyl dipeptide: concentration and temperature effect. J Chem Thermodyn 105:337–344. https://doi.org/10.1016/j.jct.2016.10.045

    Article  CAS  Google Scholar 

  57. Chauhan S, Manish, (2023) Impact of inulin on self-assembled behavior of anionic surface active ionic liquids: conductometric, spectroscopic and antimicrobial studies. J Mol Liq 390:123149. https://doi.org/10.1016/j.molliq.2023.123149

    Article  CAS  Google Scholar 

  58. Bharadwaj S, Sar SK (2014) Micellization of some bile salts in binary aqueous solvent mixtures. J Surfactants Deterg 17:143–150. https://doi.org/10.1007/s11743-012-1424-2

    Article  CAS  Google Scholar 

  59. Kumar D, Hidayathulla S, Rub MA (2018) Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt: effect of temperature and salt. J Mol Liq 271:254–264. https://doi.org/10.1016/j.molliq.2018.08.147

    Article  CAS  Google Scholar 

  60. Chauhan S, Kaur M, Chauhan MS, Kohli P (2017) Micellar and antimicrobial activities of ionic surfactants in aqueous solutions of synthesized tetraalkylammonium based ionic liquids. Colloids Surf A Physicochem Eng Asp 535:232–241. https://doi.org/10.1016/j.colsurfa.2017.09.042

    Article  CAS  Google Scholar 

  61. Stopkova L, Galisinova J, Suchtova Z, Cizmarik J, Andriamainty F (2018) Determination of critical micellar concentration of homologous 2-alkoxyphenylcarbamoyloxyethylmorpholinium chlorides. Molecules 23:1064. https://doi.org/10.3390/molecules23051064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ray GB, Chakraborty I, Moulik SP (2006) Pyrene absorption can be a convenient method for probing critical micellar concentration (CMC) and indexing micellar polarity. J Colloid Interface Sci 294:248–254. https://doi.org/10.1016/j.jcis.2005.07.006

    Article  ADS  CAS  Google Scholar 

  63. Khan AM, Shah SS (2008) A UV-visible study of partitioning of pyrene in an anionic surfactant sodium dodecyl sulfate. J Dispers Sci Technol 29:1401–1407. https://doi.org/10.1080/01932690802313246

    Article  CAS  Google Scholar 

  64. Chauhan S, Singh R, Sharma K (2016) Volumetric, compressibility, surface tension and viscometric studies of CTAB in aqueous solutions of polymers (PEG and PVP) at different temperatures. J Chem Thermodyn 103:381–394. https://doi.org/10.1016/j.jct.2016.08.032

    Article  CAS  Google Scholar 

  65. Bhattacharya DM, Dhondge SS, Zodape SP (2016) Solvation behaviour of an antihelmintic drug in aqueous solutions of sodium chloride and glucose at different temperatures. J Chem Thermodyn 101:207–220. https://doi.org/10.1016/j.jct.2016.05.025

    Article  CAS  Google Scholar 

  66. Cheema MA, Siddiq M, Barbosa S, Taboada P, Mosquera V (2008) Surface and bulk properties of two amphiphilic phenothiazine drugs in different aqueous media. J Chem Eng Data 53:368–373. https://doi.org/10.1021/je7003963

    Article  CAS  Google Scholar 

  67. Sharma K, Chauhan S (2014) Apparent molar volume, compressibility and viscometric studies of sodium dodecyl benzene sulfonate (SDBS) and dodecyltrimethylammonium bromide (DTAB) in aqueous amino acid solutions: a thermo-acoustic approach. Thermochim Acta 578:15–27. https://doi.org/10.1016/j.tca.2013.12.021

    Article  CAS  Google Scholar 

  68. Chen F, Yang Z, Chen Z, Hu J, Chen C, Cai J (2015) Density, viscosity, speed of sound, excess property and bulk modulus of binary mixtures of γ-butyrolactone with acetonitrile, dimethyl carbonate, and tetrahydrofuran at temperatures (293.15 to 333.15) K. J Mol Liq 209:683–692. https://doi.org/10.1016/j.molliq.2015.06.041

    Article  CAS  Google Scholar 

  69. Chauhan MS, Rajni SK, Pathania L, Chauhan S, Kumar G (2008) Interaction of β-lactoglobulin with ionic surfactants: apparent molar volume and compressibility studies of ionic surfactants in aqueous solutions of β-lactoglobulin. Colloids Surf A 329:106–111. https://doi.org/10.1016/j.colsurfa.2008.07.001

    Article  CAS  Google Scholar 

  70. Kant S, Kumar S (2013) Effects of alkaline earth metal ions on thermodynamic and ultrasonic properties of ascorbic acid. J Chem Eng Data 58:1294–1300. https://doi.org/10.1021/je301362j

    Article  CAS  Google Scholar 

  71. Sinha A, Roy MN (2006) Densities, viscosities, and sound speeds of some acetate salts in binary mixtures of tetrahydrofuran and methanol at (303.15, 313.15, and 323.15) K. J Chem Eng Data 51:1415–1423. https://doi.org/10.1021/je060113j

    Article  CAS  Google Scholar 

  72. Khatun MR, Islam MM, Islam MN, Rhaman MNM (2019) Studies on acoustic and aggregation properties of sodium dodecyl sulfate in amino acid solutions through ultrasonic velocity technique. J Chem 31:113–1127. https://doi.org/10.14233/ajchem.2019.21844

Download references

Acknowledgements

Labh Singh acknowledges UGC-SAP (DRS-I, II, and III) [No. F.540/3/DRS/2010(SAP-1) and F.540/2/DRS-II/2018(SAP-I)] for providing financial support to the Department of Chemistry at HPU Shimla.

Author information

Authors and Affiliations

Authors

Contributions

Suvarcha Chauhan- Supervision, Writing-review and editing, Validation Labh Singh- Original Draft writing, Conceptualization, Methodology, Investigation Manish- Conceptualization, Methodology, Writing- editing Kiran Negi- Conceptualization, Methodology, Writing- editing.

Corresponding author

Correspondence to Suvarcha Chauhan.

Ethics declarations

Ethical approval

This declaration is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 518 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Singh, L., Manish et al. Temperature dependent micellar study of streptomycin sulfate in aqueous amino acid solutions: physicochemical approach. Colloid Polym Sci 302, 363–375 (2024). https://doi.org/10.1007/s00396-023-05203-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05203-0

Keywords

Navigation