Log in

Synthesis and biocompatibility of self-assembling multi-tailed resorcinarene-based supramolecular amphiphile

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nano-vesicles of multi-tailed macrocycle molecules have demonstrated a great ability to enhance the bioavailability of hydrophobic drugs. In this study, amphiphilic multi-tailed resorcinarene (MTR) derivative was synthesised in two steps reaction by O-alkylation of 4-hydroxybenzaldehyde and then condensation with resorcinol. The synthesised amphiphilic macrocycle was characterized by 1H-NMR, FT-IR and mass spectrometry. Self-assembly and aggregation behaviour of amphiphilic macrocycle was studied in aqueous medium and vesicles were characterised for morphology, critical micelle concentration (CMC), size and surface potential and cellular biocompatibility. The self-assembling ability of MTR was used for one-step loading of hydrophobic drug, i.e. clarithromycin. MTR presented a low CMC value, i.e. 0.055 mM and formed niosomal vesicles with a mean diameter of 210 ± 2 nm, narrow size distribution and 65.12 ± 3.31% drug entrapment efficiency. MTR vesicles showed sustained in vitro drug release while maximum drug release was achieved at 8 h. Biocompatibility of MTR was investigated with blood haemolysis and cytotoxicity assays. The results indicated suitability of MRT as amphiphilic macromolecular surfactant.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lehn J-M (1995) Supramolecular chemistry, vol 1. vol 995. Vch, Weinheim Germany

    Book  Google Scholar 

  2. Lehn J-M, Sanders J (1995) Supramolecular chemistry. Concepts and perspectives. Angew Chem Int Ed 34(22):2563

    Google Scholar 

  3. Catenanes M (1999) In: Sauvage J-P, Dietrich-Buchecker C (eds) Rotaxanes, and knots. Wiley-VCH, Weinheim

    Google Scholar 

  4. Sauvage J, Dietrich-Buchecker C (1999) Catenanes, rotaxanes and knots. VCH, Weilheim

    Book  Google Scholar 

  5. Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98(5):2045–2076

    Article  CAS  PubMed  Google Scholar 

  6. Merkus F, Verhoef J, Marttin E, Romeijn S, Van der Kuy P, Hermens W, Schipper N (1999) Cyclodextrins in nasal drug delivery. Adv Drug Deliv Rev 36(1):41–57

    Article  CAS  PubMed  Google Scholar 

  7. Loftssona T, Järvinen T (1999) Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev 36(1):59–79

    Article  CAS  PubMed  Google Scholar 

  8. Irie T, Uekama K (1999) Cyclodextrins in peptide and protein delivery. Adv Drug Deliv Rev 36(1):101–123

    Article  CAS  PubMed  Google Scholar 

  9. Marttin E, Schipper NG, Verhoef JC, Merkus FW (1998) Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev 29(1–2):13–38

    Article  CAS  PubMed  Google Scholar 

  10. Romeo V, Gries W, **a W, Sileno A, Pimplaskar H, Behl C (1998) Optimization of systemic nasal drug delivery with pharmaceutical excipients. Adv Drug Deliv Rev 29(1–2):117–133

    CAS  PubMed  Google Scholar 

  11. Hörter D, Dressman J (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract1. Adv Drug Deliv Rev 46(1–3):75–87

    Article  PubMed  Google Scholar 

  12. Rensen PC, de Vrueh RL, Kuiper J, Bijsterbosch MK, Biessen EA, van Berkel TJ (2001) Recombinant lipoproteins: lipoprotein-like lipid particles for drugtargeting. Adv Drug Deliv Rev 47(2-3):251–276

  13. Kazunori K, Masayuki Y, Teruo O, Yasuhisa S (1993) Block copolymer micelles as vehicles for drug delivery. J Control Release 24(1–3):119–132

    Article  Google Scholar 

  14. Sy C, Wilson DS, Guay DR, Craft C (1992) Clarithromycin pharmacokinetics in healthy young and elderly volunteers. J Clin Pharmacol 32(11):1045–1049

    Article  Google Scholar 

  15. Rodvold KA (1999) Clinical pharmacokinetics of clarithromycin. Clin Pharmacokinet 37(5):385–398

    Article  CAS  PubMed  Google Scholar 

  16. Ali I, Shah MR, Imran MJJS, Detergents (2017) Synthesis of sulfur-based biocompatible nonionic surfactants and their nano-vesicle drug delivery. J Surfactant Deterg 20(6):1367–1375

    Article  CAS  Google Scholar 

  17. Manconi M, Sinico C, Valenti D, Loy G, Fadda AM (2002) Niosomes as carriers for tretinoin. I Preparation and properties. Int J Pharm 234(1):237–248

    Article  CAS  PubMed  Google Scholar 

  18. Helttunen K, Shahgaldian P (2010) Self-assembly of amphiphilic calixarenes and resorcinarenes in water. New J Chem 34(12):2704–2714

    Article  CAS  Google Scholar 

  19. Kharlamov SV, Kashapov RR, Pashirova TN, Zhiltsova EP, Lukashenko SS, Ziganshina AY, Gubaidullin AT, Zakharova LY, Gruner M, Habicher WD (2013) A supramolecular amphiphile based on calix [4] resorcinarene and cationic surfactant for controlled self-assembly. J Phys Chem C 117(39):20280–20288

    Article  CAS  Google Scholar 

  20. Kashapov RR, Zakharova LY, Saifutdinova MN, Gavrilova EL, Sinyashin OG (2015) Self-assembly strategies for improving the water solubility of new amino acid calix [4] resorcinarenes. Tetrahedron Lett 56(19):2508–2511

    Article  CAS  Google Scholar 

  21. Essa E (2010) Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J Pharm 4(4):227

    Article  CAS  Google Scholar 

  22. Imran M, Shah MR, Ullah F, Ullah S, Elhissi AM, Nawaz W, Ahmad F, Sadiq A, Ali I (2016) Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. Int J Pharm 505(1–2):122–132

    Article  CAS  PubMed  Google Scholar 

  23. Tavano L, Picci N, Ioele G, Muzzalupo RJJD (2017) Tetracycline-niosomes versus tetracycline hydrochlo-ride-niosomes: how to modulate encapsulation and percutaneous permeation properties. J Drug 1(2):1–6

    Article  Google Scholar 

  24. Bini K, Akhilesh D, Prabhakara P, Kamath JV (2012) Development and characterization of non-ionic surfactant vesicles (niosomes) for oral delivery of Lornoxicam. Int J Drug Dev Res 4(3):147–154

    CAS  Google Scholar 

  25. Karim KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K (2010) Niosome: a future of targeted drug delivery systems. J Advan Pharma Technol Res 1(4):374

    Article  CAS  Google Scholar 

  26. Sohail MF, Javed I, Hussain SZ, Sarwar S, Akhtar S, Nadhman A, Batool S, Bukhari NI, Saleem RSZ, Hussain I (2016) Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity of docetaxel. J Mater Chem B 4(37):6240–6248

    Article  CAS  PubMed  Google Scholar 

  27. Deniz A, Sade A, Severcan F, Keskin D, Tezcaner A, Banerjee S (2010) Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep 30(5):365–373

    Article  CAS  PubMed  Google Scholar 

  28. Briuglia M-L, Rotella C, McFarlane A, Lamprou DA (2015) Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 5(3):231–242

    Article  CAS  PubMed  Google Scholar 

  29. Mehta S, **dal N (2015) Tyloxapol niosomes as prospective drug delivery module for antiretroviral drug nevirapine. AAPS PharmSciTech 16(1):67–75

    Article  CAS  PubMed  Google Scholar 

  30. Ali I, Shah MR, Yousaf S, Ahmed S, Shah K, Javed IJTR (2018) Haemolytic and cellular toxicology of sulfanilamide-based nonionic surfactant: a niosomal carrier for hydrophobic drugs. Toxicol Res 7(5):771–778

    Article  CAS  Google Scholar 

  31. Kalhapure RS, Akamanchi KG (2012) Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system. Int J Pharm 425(1–2):9–18

    Article  CAS  PubMed  Google Scholar 

  32. Javed I, Peng G, **ng Y, Yu T, Zhao M, Kakinen A, Faridi A, Parish CL, Ding F, Davis TP (2019) Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat Commun 10(1):1–14

    Article  CAS  Google Scholar 

  33. Dong R, Zhou Y, Huang X, Zhu X, Lu Y, Shen J (2015) Functional supramolecular polymers for biomedical applications. Adv Mater 27(3):498–526

    Article  CAS  PubMed  Google Scholar 

  34. Javed I, Hussain SZ, Shahzad A, Khan JM, Rehman M, Usman F, Razi MT, Shah MR, Hussain I (2016) Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein—in-vitro and in-vivo study. Colloids Suf B Biointerf 141:1–9

    Article  CAS  Google Scholar 

  35. Munir MU, Ihsan A, Javed I, Ansari MT, Bajwa SZ, Bukhari SNA, Ahmed A, Malik MZ, Khan WS (2019) Controllably biodegradable hydroxyapatite nanostructures for cefazolin delivery against antibacterial resistance. ACS Omega 4(4):7524–7532

    Article  CAS  Google Scholar 

  36. **ng P, Sun T, Hao A (2013) Vesicles from supramolecular amphiphiles. RSC Adv 3(47):24776–24793

    Article  CAS  Google Scholar 

  37. Hosmer JM, Shin SH, Nornoo A, Zheng H, Lopes LBJJ (2011) Influence of internal structure and composition of liquid crystalline phases on topical delivery of paclitaxel. J Pharm Sci 100(4):1444–1455

    Article  CAS  PubMed  Google Scholar 

  38. Hou L, Zheng Y, Wang Y, Hu Y, Shi J, Liu Q, Zhang H, Zhang Z (2018) Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “touch switch” releasing property for insulin delivery. ACS Appl Mater Interfaces 10(26):21927–21938

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ibrahim Javed or Muhammad Raza Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Saifullah, S., Imran, M. et al. Synthesis and biocompatibility of self-assembling multi-tailed resorcinarene-based supramolecular amphiphile. Colloid Polym Sci 298, 331–339 (2020). https://doi.org/10.1007/s00396-020-04610-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04610-x

Keywords

Navigation