Log in

Preparation of epoxy monoliths via chemically induced phase separation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Epoxy porous monoliths were prepared from a commercial epoxy resin, D.E.R. 331, that cured with a tertiary amine, 2,4,6-tris-(dimethylaminomethyl) phenol, in the presence of a solvent, diisobutyl ketone (DIBK). During the curing process, polymers were formed and a decrease in its solubility in DIBK; the solution thus phase-separated, usually referred to as chemically induced phase separation. The phase separation formed interconnected polymer-poor phase that then became interconnected pores after the removal of DIBK. By varying the content of DIBK from 32 to 40 vol.%, epoxy monoliths with interconnected pores were prepared, with surface pore size ranging from 0.20 to 2.33 μm, overall porosity from 0.41 to 0.60, and ethanol permeability from 10 to 4,717 L/(m2 h−1 bar−1). The glass transition temperatures of the epoxy monoliths, measured with differential scanning calorimetry, were all higher than 100 °C, and temperatures of 5 % weight loss, analyzed by thermal gravimetry, were higher than 350 °C, evidencing the monoliths’ high thermal stability. Also, the monolith morphology was found to be strongly related to the reaction mechanism of polymerization. The results indicate that the mechanism of chain initiation and propagation associated with the tertiary amine can effectively form monoliths with interconnected pores, which cannot be easily prepared with a stepwise polymerization mechanism associated with using primary amine as the curing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sotiropoulou S, Vamvakaki V, Chaniotakis NA (2005) Biosens Bioelectron 20(8 SPEC. ISS):1674

    Article  CAS  Google Scholar 

  2. Huck CW, Bonn GK (2005) Chem Eng Technol 28(12):1457

    Article  CAS  Google Scholar 

  3. Barbetta A, Carnachan RJ, Smith KH, Zhao CT, Cameron NR, Kataky R, Hayman M, Przyborski SA, Swan M (2005) Macromol Symp 226(1):203

    Article  CAS  Google Scholar 

  4. Higuchi A, Shindo Y, Gomei Y, Mori T, Uyama T, Umezawa A (2005) J Biomed Mater Res B Appl Biomater 74(1):511

    Google Scholar 

  5. Safinia L, Mantalaris A, Bismarck A (2006) Langmuir 22(7):3235

    Article  CAS  Google Scholar 

  6. Romeo HE, Vílchez A, Esquena J, Hoppe CE, Williams RJJ (2012) Eur Polym J 48(6):1101

    Article  CAS  Google Scholar 

  7. Svec F, Kurganov AA (2008) J Chromatogr A 1184(1–2):281

    CAS  Google Scholar 

  8. Varilova T, Madera M, Pacakova V, Stulik K (2006) Curr Proteomics 3(1):55

    Article  CAS  Google Scholar 

  9. Zilberman M (2005) Acta Biomater 1(6):615

    Article  CAS  Google Scholar 

  10. **e S, Svec F, Fréchet JMJ (1998) Chem Mater 10(12):4072

    Article  CAS  Google Scholar 

  11. Svec F, Fréchet JMJ (1999) Ind Eng Chem Res 38(1):34

    Article  CAS  Google Scholar 

  12. Peters EC, Svec F, Fréchet JMJ, Viklund C, Irgum K (1999) Macromolecules 32(19):6377

    Article  CAS  Google Scholar 

  13. Kiefer J, Hedrick JL, Hilborn JG (1999) Macroporous thermosets by chemically induced phase separation. Adv Polym Sci 147:161–247

    Article  CAS  Google Scholar 

  14. Kiefer J, Hilborn JG, Hedrick JL, Cha HJ, Yoon DY, Hedrick JC (1996) Macromolecules 29(26):8546

    Article  CAS  Google Scholar 

  15. Della Martina A, Hilborn JG, Mühlebach A (2000) Macromolecules 33(8):2916

    Article  CAS  Google Scholar 

  16. Garcia Loera A, Dumon M, Pascault JP (2000) Macromol Symp 151:341

    Article  Google Scholar 

  17. Ai H, Xu K, Chen W, Liu H, Chen M (2009) Polym Int 58(1):105

    Article  CAS  Google Scholar 

  18. Luo YS, Cheng KC, Huang ND, Chiang WP, Li SF (2011) J Polym Sci B Polym Phys 49(14):1022

    Article  CAS  Google Scholar 

  19. Kiefer J, Hilborn JG, Hedrick JL (1996) Polymer 37(25):5715

    Article  CAS  Google Scholar 

  20. Kiefer J, Hilborn JG, Månson JAE, Leterrier Y, Hedrick JL (1996) Macromolecules 29(11):4158

    Article  CAS  Google Scholar 

  21. Loera AG, Cara F, Dumon M, Pascault JP (2002) Macromolecules 35(16):6291

    Article  CAS  Google Scholar 

  22. Williams RJJ, Rozenberg BA, Pascault JP (1997) Adv Polym Sci 128:95

    Article  CAS  Google Scholar 

  23. Tsujioka N, Ishizuka N, Tanaka N, Kubo T, Hosoya K (2008) J Polym Sci A Polym Chem 46(10):3272

    Article  CAS  Google Scholar 

  24. Han JL, Hsieh KH, Chiu WY (1993) J Appl Polym Sci 50(6):1099

    Article  CAS  Google Scholar 

  25. Dzhavadyan EA, Bogdanova LM, Irzhak VI, Rozenberg BA (1997) Polym Sci Ser A 39(4):383

    Google Scholar 

  26. Dell’Erba IE, Williams RJJ (2006) Polym Eng Sci 46(3):351

    Article  Google Scholar 

  27. Kuzub LI, Irzhak VI (2001) Colloid J 63(1):86

    Article  CAS  Google Scholar 

  28. Chakrabarty B, Ghoshal AK, Purkait MK (2008) J Colloid Interface Sci 320(1):245

    Article  CAS  Google Scholar 

  29. Chen JL, Chang FC (2001) Polymer 42(5):2193

    Article  CAS  Google Scholar 

  30. Vazquez A, Bentaleb D, Williams RJJ (1991) J Appl Polym Sci 43(5):967

    Article  CAS  Google Scholar 

  31. Rozenberg B (1986) Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Adv Polym Sci 75:113–165

    Article  Google Scholar 

  32. Shechter L, Wynstra J, Kurkjy RP (1956) Ind Eng Chem 48(1):94

    Article  CAS  Google Scholar 

  33. Cheng KC, Don TM, Rwei SP, Li YC, Duann YF (2002) J Polym Sci B Polym Phys 40(17):1857

    Article  CAS  Google Scholar 

  34. Winter HH, Chambon F (1986) J Rheol 30(2):367

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the National Science Council of Taiwan for the financial support of this study under Contract NSC 97-2221-E-027-013-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Chung Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 517 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, YS., Cheng, KC., Wu, CL. et al. Preparation of epoxy monoliths via chemically induced phase separation. Colloid Polym Sci 291, 1903–1912 (2013). https://doi.org/10.1007/s00396-013-2926-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2926-9

Keywords

Navigation