Log in

Impact of hepatocyte growth factor on the colonic morphology and gut microbiome in short bowel syndrome rat model

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the impact of hepatocyte growth factor (HGF) on colonic morphology and gut microbiota in a rat model of short bowel syndrome (SBS).

Methods

SD rats underwent jugular vein catheterization for total parenteral nutrition (TPN) and 90% small bowel resection [TPN + SBS (control group) or TPN + SBS + intravenous HGF (0.3 mg/kg/day, HGF group)]. Rats were harvested on day 7. Colonic morphology, gut microflora, tight junction, and Toll-like receptor-4 (TLR4) were evaluated.

Results

No significant differences were observed in the colonic morphological assessment. No significant differences were observed in the expression of tight junction-related genes in the proximal colon. However, the claudin-1 expression tended to increase and the claudin-3 expression tended to decrease in the distal colon of the HGF group. The Verrucomicrobiota in the gut microflora of the colon tended to increase in the HGF group. The abundance of most LPS-producing microbiota was lower in the HGF group than in the control group. The gene expression of TLR4 was significantly downregulated in the distal colon of the HGF group.

Conclusion

HGF may enhance the mucus barrier through the tight junctions or gut microbiome in the distal colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

SBS:

Short bowel syndrome

TPN:

Total parenteral nutrition

IFALD:

Intestinal failure-associated liver disease

HGF:

Hepatocyte growth factor

MSBR:

Massive small bowel resection

PCR:

Real-time polymerase chain reaction

ZO-1:

Zonula occludens-1

TLR4:

Toll-like receptor-4

References

  1. Norsa L, Goulet O, Alberti D, DeKooning B, Domellöf M, Haiden N et al (2023) Nutrition and intestinal rehabilitation of children with short bowel syndrome: a position paper of the ESPGHAN committee on nutrition. Part 1: from intestinal resection to home discharge. J Pediatr Gastroenterol Nutr 77:281–297. https://doi.org/10.1097/mpg.0000000000003849

    Article  PubMed  Google Scholar 

  2. Norsa L, Goulet O, Alberti D, DeKooning B, Domellöf M, Haiden N et al (2023) Nutrition and intestinal rehabilitation of children with short bowel syndrome: a position paper of the ESPGHAN committee on nutrition. Part 2: long-term follow-up on home parenteral nutrition. J Pediatr Gastroenterol Nutr 77:298–314. https://doi.org/10.1097/mpg.0000000000003850

    Article  PubMed  Google Scholar 

  3. Merritt RJ, Cohran V, Raphael BP, Sentongo T, Volpert D, Warner BW, Goday PS (2017) Intestinal rehabilitation programs in the management of pediatric intestinal failure and short bowel syndrome. J Pediatr Gastroenterol Nutr 65:588–596. https://doi.org/10.1097/mpg.0000000000001722

    Article  PubMed  Google Scholar 

  4. Nordgaard I, Hansen BS, Mortensen PB (1994) Colon as a digestive organ in patients with short bowel. Lancet 343:373–376. https://doi.org/10.1016/s0140-6736(94)91220-3

    Article  CAS  PubMed  Google Scholar 

  5. Belza C, Fitzgerald K, de Silva N, Avitzur Y, Wales PW (2019) Early predictors of enteral autonomy in pediatric intestinal failure resulting from short bowel syndrome: development of a disease severity scoring tool. JPEN J Parenter Enteral Nutr 43:961–969. https://doi.org/10.1002/jpen.1691

    Article  CAS  PubMed  Google Scholar 

  6. Sandy NS, Roberts AJ, Wales PW, Toma RK, Belza C, Dogra H et al (2024) Small and large bowel anatomy is associated with enteral autonomy in infants with short bowel syndrome: a retrospective cohort study. JPEN J Parenter Enteral Nutr 48:231–238. https://doi.org/10.1002/jpen.2587

    Article  CAS  PubMed  Google Scholar 

  7. Norsa L, Lambe C, Abi Abboud S, Barbot-Trystram L, Ferrari A, Talbotec C et al (2019) The colon as an energy salvage organ for children with short bowel syndrome. Am J Clin Nutr 109:1112–1118. https://doi.org/10.1093/ajcn/nqy367

    Article  PubMed  Google Scholar 

  8. Wieck MM, Schlieve CR, Thornton ME, Fowler KL, Isani M, Grant CN et al (2017) Prolonged absence of mechanoluminal stimulation in human intestine alters the transcriptome and intestinal stem cell niche. Cell Mol Gastroenterol Hepatol 3:367–388. https://doi.org/10.1016/j.jcmgh.2016.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chowdhury F, Hill L, Shah N, Popov J, Cheveldayoff P, Pai N (2023) Intestinal microbiome in short bowel syndrome: diagnostic and therapeutic opportunities. Curr Opin Gastroenterol 39:463–471. https://doi.org/10.1097/mog.0000000000000970

    Article  CAS  PubMed  Google Scholar 

  10. Yano K, Sugita K, Muto M, Matsukubo M, Onishi S, Kedoin C et al (2022) The preventive effect of recombinant human hepatocyte growth factor for hepatic steatosis in a rat model of short bowel syndrome. J Pediatr Surg 57:1286–1292. https://doi.org/10.1016/j.jpedsurg.2022.02.030

    Article  PubMed  Google Scholar 

  11. Sugita K, Yano K, Matsukubo M, Iwamoto Y, Ogata M, Takada L et al (2023) Potential mechanisms underlying the effect of hepatocyte growth factor on liver injury in short bowel syndrome model rats. Pediatr Surg Int 40(1):8. https://doi.org/10.1007/s00383-023-05593-w

    Article  PubMed  Google Scholar 

  12. Sugita K, Yano K, Onishi S, Iwamoto Y, Ogata M, Takada L et al (2023) Superiority of intestinal adaptation by hepatocyte growth factor in the jejunum: an experimental study in a short-bowel rat model. J Pediatr Surg In Press. https://doi.org/10.1016/j.jpedsurg.2023.11.028

    Article  Google Scholar 

  13. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  Google Scholar 

  14. Washizawa N, Gu LH, Gu L, Openo KP, Jones DP, Ziegler TR (2004) Comparative effects of glucagon-like peptide-2 (GLP-2), growth hormone (GH), and keratinocyte growth factor (KGF) on markers of gut adaptation after massive small bowel resection in rats. JPEN J Parenter Enteral Nutr 28:399–409. https://doi.org/10.1177/0148607104028006399

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez-Estivariz C, Gu LH, Gu L, Jonas CR, Wallace TM, Pascal RR et al (2003) Trefoil peptide expression and goblet cell number in rat intestine: effects of KGF and fasting-refeeding. Am J Physiol Regul Integr Comp Physiol 284:564–573. https://doi.org/10.1152/ajpregu.00428.2002

    Article  Google Scholar 

  16. Gohda E, Tsubouchi H, Nakayama H, Hirono S, Sakiyama O, Takahashi K et al (1988) Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest 81:414–419. https://doi.org/10.1172/jci113334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johansson ME, Hansson GC (2013) Mucus and the goblet cell. Dig Dis 31:305–309. https://doi.org/10.1159/000354683

    Article  PubMed  Google Scholar 

  18. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB et al (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131:117–129. https://doi.org/10.1053/j.gastro.2006.04.020

    Article  CAS  PubMed  Google Scholar 

  19. Hou L, Wang H, Yan M, Cai Y, Zheng R, Ma Y, Tang W, Jiang W (2024) Obeticholic acid attenuates the intestinal barrier disruption in a rat model of short bowel syndrome. Biochim Biophys Acta Mol Basis Dis 1870:167221. https://doi.org/10.1016/j.bbadis.2024.167221

    Article  CAS  PubMed  Google Scholar 

  20. Nasu Y, Ido A, Tanoue S, Hashimoto S, Sasaki F, Kanmura S et al (2013) Hepatocyte growth factor stimulates the migration of gastric epithelial cells by altering the subcellular localization of the tight junction protein ZO-1. J Gastroenterol 48:193–202. https://doi.org/10.1007/s00535-012-0615-y

    Article  CAS  PubMed  Google Scholar 

  21. Twiss F, Oldenkamp M, Hiemstra A, Zhou H, Matheron L, Mohammed S, de Rooij J (2013) HGF signaling regulates Claudin-3 dynamics through its C-terminal tyrosine residues. Tissue Barriers 1:e27425. https://doi.org/10.4161/tisb.27425

    Article  PubMed  Google Scholar 

  22. Phyo LY, Singkhamanan K, Laochareonsuk W, Surachat K, Phutong N, Boonsanit K et al (2021) Fecal microbiome alterations in pediatric patients with short bowel syndrome receiving a rotating cycle of gastrointestinal prophylactic antibiotics. Pediatr Surg Int 37:1371–1381. https://doi.org/10.1007/s00383-021-04948-5

    Article  PubMed  Google Scholar 

  23. Davidovics ZH, Carter BA, Luna RA, Hollister EB, Shulman RJ, Versalovic J (2016) The fecal microbiome in pediatric patients with short bowel syndrome. JPEN J Parenter Enteral Nutr 40:1106–1113. https://doi.org/10.1177/0148607115591216

    Article  CAS  PubMed  Google Scholar 

  24. Manithody CS, Van Nispen J, Murali V, Jain S, Samaddar A, Armstrong A, Jain A et al (2023) Role of bile acids and gut microbiota in parenteral nutrition associated injury. J Hum Nutr (Carson City). https://doi.org/10.36959/487/286

    Article  Google Scholar 

  25. Watanabe Y, Fujisaka S, Morinaga Y, Watanabe S, Nawaz A, Hatta H et al (2023) Isoxanthohumol improves obesity and glucose metabolism via inhibiting intestinal lipid absorption with a bloom of Akkermansia muciniphila in mice. Mol Metab 77:101797. https://doi.org/10.1016/j.molmet.2023.101797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu X, Shen J, Feng S, Huang C, Wang H, Huo F, Liu H (2023) Akkermansia muciniphila, which is enriched in the gut microbiota by metformin, improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6. Microbiome 11(1):120. https://doi.org/10.1186/s40168-023-01567-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ogata K, Moriyama M, Kawado T, Yoshioka H, Yano A, Matsumura-Kawashima M et al (2024) Extracellular vesicles of iPS cells highly capable of producing HGF and TGF-β1 can attenuate Sjögren’s syndrome via innate immunity regulation. Cell Signal 113:110980. https://doi.org/10.1016/j.cellsig.2023.110980

    Article  CAS  PubMed  Google Scholar 

  28. Maselli KM, Gee K, Isani M, Fode A, Schall KA, Grikscheit TC (2020) Broad-spectrum antibiotics alter the microbiome, increase intestinal fxr, and decrease hepatic steatosis in zebrafish short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 319:212–226. https://doi.org/10.1152/ajpgi.00119.2020

    Article  CAS  Google Scholar 

  29. Sharifnia T, Antoun J, Verriere TG, Suarez G, Wattacheril J, Wilson KT et al (2015) Hepatic TLR4 signaling in obese NAFLD. Am J Physiol Gastrointest Liver Physiol 309:270–278. https://doi.org/10.1152/ajpgi.00304.2014

    Article  CAS  Google Scholar 

  30. Kilpatrick LE, Hill SJ (2021) Transactivation of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs): recent insights using luminescence and fluorescence technologies. Curr Opin Endocr Metab Res 16:102–112. https://doi.org/10.1016/j.coemr.2020.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Laboratory Animal Science Research Support Center Institute for Research Promotion, Kagoshima University. The authors thank Mr. Brian Quinn for his comments and assistance in this manuscript. The authors thank Tomomi Kamibayashiyama, a technician at our institution, for her help with the management of the rat, histopathological measurements, and RT-PCR analyses. The authors thank Orie Iwaya, a technician at the Department of Pathology, Graduate School of Medical and Dental Science, for her help with the histopathological staining. This study was supported by the Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS: 23K08031, 22K07848, 22K07894, 22K08719, 22K08736, 22K08757, 21K07867, and 21K08623) and a Grant from the Kawano Masanori Memorial Foundation for Promotion of Pediatrics.

Author information

Authors and Affiliations

Authors

Contributions

K.S., K.Y., and M.M. designed the study. K.S., K.Y., S.O., and T.K. performed experiments. Y.I., M.O., and L.T. supported the histopathological assessment. Y.T., K.C., M.M., T.H., and K.S. analyzed the data and created the Tables and Figures. M.M., K.K., A.I., and T.K. provided conceptual advice. K.S. wrote the manuscript in consultation with S.I.

Corresponding author

Correspondence to Satoshi Ieiri.

Ethics declarations

Conflict of interest

Koshiro Sugita and other co-authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugita, K., Yano, K., Onishi, S. et al. Impact of hepatocyte growth factor on the colonic morphology and gut microbiome in short bowel syndrome rat model. Pediatr Surg Int 40, 185 (2024). https://doi.org/10.1007/s00383-024-05776-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00383-024-05776-z

Keywords

Navigation