Log in

Asymmetric response in Northeast Asia of summer NDVI to the preceding ENSO cycle

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The possibility of an asymmetric response of summer (June–July–August; JJA) vegetation vigor over Northeast Asia (NEA), captured by Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (NDVI), to the preceding spring (February–March–April; FMA) El Niño–Southern Oscillation (ENSO) cycle was investigated. Over the period 1982–2006, negative NDVI anomalies with statistical significance appeared over NEA during El Niño episodes; whereas, during La Niña, only slightly increasing NDVI anomalies appeared, and without statistical significance. Results showed the asymmetric responses of atmospheric circulations to El Niño and La Niña to be the most likely main mechanisms responsible for the asymmetric impacts of the spring (FMA) ENSO cycle on summer (JJA) NDVI over NEA (NEA-NDVI). During El Niño, a meridional teleconnection with an anticyclone–cyclone–anticyclone poleward structure is formed from the Philippine Sea to the Sea of Okhotsk. NEA is located right at the border between the mid-latitude cyclone and the high-latitude anticyclonic anomalies, accompanied by a strong northeasterly wind anomaly and the transport of dry, cold air from Russia and East Siberia to NEA. Therefore, the vegetation vigor is distinctly inhibited during El Niño episodes. However, during La Niña episodes, there is a quasi-meridional teleconnection along the Great Circle Route from the tropical western Pacific to the North Pacific, which is quite different from the meridional teleconnection formed during El Niño episodes. Results showed that the northeastward pattern has little impact on circulation and climate factors over NEA. As a result, during La Niña, only a slightly increasing NDVI anomaly appears over NEA, and without statistical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • An SI, ** FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412

    Article  Google Scholar 

  • Anyamba A, Tucker CJ (2001) NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int J Remote Sens 22:1847–1859

    Article  Google Scholar 

  • Anyamba A, Tucker CJ, Mahoney R (2002) From El Niño to La Niña: vegetation response patterns over East and Southern Africa during the 1997–2000 period. J Clim 15:3096–3103

    Article  Google Scholar 

  • Bannari A, Morin D, Bonn F, Huete A (1995) A review of vegetation indices. Remote Sens Rev 13:95–120

    Article  Google Scholar 

  • Bounoua L, Collatz G, Los S, Sellers P, Dazlich D, Tucker C, Randall D (2000) Sensitivity of climate to changes in NDVI. J Clim 13:2277–2292

    Article  Google Scholar 

  • Burgers G, Stephenson DB (1999) The normality of El Niño. Geophys Res Lett 26:1027–1030

    Article  Google Scholar 

  • Cai W, Cowan T (2009) La Niña Modoki impacts Australia autumn rainfall variability. Geophys Res Lett. doi:10.1029/2009GL037885

    Google Scholar 

  • Cai W, Van Rensch P, Cowan T, Sullivan A (2010) Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J Clim 23:4944–4955

    Article  Google Scholar 

  • Cane MA (1983) Oceanographic events during El Niño. Science 222:1189–1195

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  Google Scholar 

  • Dai S, Zhang B, Wang H (2010) Spatio-temporal change of Vegetation Index NDVI in Northwest China and its influencing factors. Int J Geogr Inf Sci 12(3):315–321

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Du Y, **e S, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J Clim 22:2023–2038

    Article  Google Scholar 

  • Fan K, Wang HJ, Choi YJ (2008) A physically-based statistical forecast model for the middle-lower reaches of Yangtze River Valley summer rainfall. Chin Sci Bull 54(4):602–609

    Article  Google Scholar 

  • Fan K, Lin MJ, Gao YZ (2009) Forecasting the summer rainfall in North China using the year-to-year increment approach. Sci China 52:532–539

    Article  Google Scholar 

  • Fan K, Xu Z, Tian B (2014) Has the intensity of the interannual variability in summer rainfall over South China remarkably increased? Meteorol Atmos Phys 124:23–32

    Article  Google Scholar 

  • Fu C, Jiang Z, Guan Z, He J, Xu Z (2008) Interannual variability of summer climate of China in association with ENSO and the Indian Ocean dipole. In: Regional Climate Studies of China. Springer, pp 119-154

  • Gao H, Yang S, Kumar A, Hu ZZ, Huang B, Li Y, Jha B (2011) Variations of the East Asian Mei-Yu and simulation and prediction by the NCEP climate forecast system. J Clim 24:94–108

    Article  Google Scholar 

  • Gershunov A, Barnett TP (1998) ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: observations and model results. J Clim 11:1575–1586

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Met Soc 106:447–462

    Article  Google Scholar 

  • Gong DY, Shi PJ (2004) Inter-annual changes in Eurasian continent NDVI and its sensitivity to the large-scale climate variations in the last 20 years. Acta Bot Sin 46:186–193

    Google Scholar 

  • Halpert MS, Ropelewski CF (1992) Surface temperature patterns associated with the Southern Oscillation. J Clim 5:577–593

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Hu K, Huang G (2010) The formation of precipitation anomaly patterns during the develo** and decaying phases of ENSO. Atmos Ocean Sci Lett 03:25–30

    Article  Google Scholar 

  • Huang RH (1984) The characteristics of the forced stationary planetary wave propagations in summer Northern Hemisphere. Adv Atmos Sci 1:84–94

    Article  Google Scholar 

  • Huang RH (1992) The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. J Meteorol Res 25-37

  • Jia GJ, Epstein HE, Walker DA (2006) Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob Chang Biol 12:42–55

    Article  Google Scholar 

  • Jia GJ, Epstein HE, Walker DA (2009) Vegetation greening in the Canadian Arctic related to decadal warming. J Environ Monit 11:2231–2238

    Article  Google Scholar 

  • ** FF, An SI, Timmermann A, Zhao J (2003) Strong El Nino events and nonlinear dynamical heating. Geophys Res Lett 30:20-21-20-21

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kang IS, Kug JS (2002) El Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res Atmos. doi:10.1029/2001JD000393

    Google Scholar 

  • Karori MA, Li J, ** FF (2013) The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over Southeast China. J Clim 26:4567–4582

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932

    Article  Google Scholar 

  • Kolbek J, Srutek M, Box EEO (2013) Forest vegetation of Northeast Asia. Springer, Netherlands. doi:10.1007/978-94-017-0143-3

  • Kumar A, Khan MA, Muqtadir A (2010) Distribution of mangroves along the Red Sea coast of the Arabian Peninsula: Part–1: the northern coast of western Saudi Arabia. Earth Sci Ind 3:28–42

    Google Scholar 

  • Larkin NK, Harrison D (2002) ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Clim 15:1118–1140

    Article  Google Scholar 

  • Li Z, Kafatos M (2000) Interannual variability of vegetation in the United States and its relation to El Niño/Southern Oscillation. Remote Sens Environ 71:239–247

    Article  Google Scholar 

  • Li J, Fan K, Xu Z (2015) Links between the late wintertime North Atlantic Oscillation and springtime vegetation growth over Eurasia. Clim Dyn. doi:10.1007/s00382-015-2627-9

    Google Scholar 

  • Liu W, Juárez RN (2001) ENSO drought onset prediction in northeast Brazil using NDVI. Int J Remote Sens 22:3483–3501

    Article  Google Scholar 

  • Maignan F, Bréon FM, Bacour C, Demarty J, Poirson A (2008) Interannual vegetation phenology estimates from global AVHRR measurements: comparison with in situ data and applications. Remote Sens Environ 112:496–505

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43

    Google Scholar 

  • Mennis J (2001) Exploring relationships between ENSO and vegetation vigour in the south-east USA using AVHRR data. Int J Remote Sens 22:3077–3092

    Article  Google Scholar 

  • Nakamura Y, Krestov PV, Omelko AM (2007) Bioclimate and zonal vegetation in Northeast Asia: first approximation to an integrated study. Phytocoenologia 37:443–470

    Article  Google Scholar 

  • Nitta T (1987) Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J Meteorol Soc Jpn 65:373–390

    Google Scholar 

  • Ogutu JO, Owen-Smith N (2003) ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol Lett 6:412–419

    Article  Google Scholar 

  • Okumura YM, Deser C (2010) A proposed mechanism for the asymmetric duration of El Niño and La Niña. J Clim 24:3822–3829. doi:10.1175/2011JCLI3999.1

    Article  Google Scholar 

  • Peters AJ, Lei J, Walter-Shea E (2003) Southeastern U.S. vegetation response to ENSO events (1989–1999). Clim Change. DOI: 10.1023/A:1026081615868

  • Philander S (1983) El Niño Southern Oscillation phenomena. Nature 302:295–301. doi:10.1038/302295a0

    Article  Google Scholar 

  • Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J (2011) Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob Change Biol 17:3228–3239

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Niño/Southern Oscillation. Science 222:1195–1202

    Article  Google Scholar 

  • Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114:2352–2362

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Sun JQ, Wang HJ (2006) Regional difference of summer air temperature anomalies in Northeast China and its relationship to atmospheric general circulation and sea surface temperature. Chin J Geophys 49:588–598

    Article  Google Scholar 

  • Tian BQ, Fan K (2013) Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley. Meteorol Atmos Phys 121:189–197. doi:10.1007/s00703-013-0261-9

    Article  Google Scholar 

  • Tian BQ, Fan K (2015) A skillful prediction model for winter NAO based on Atlantic sea surface temperature and Eurasian snow cover. Weather Forecast. doi:10.1175/WAF-D-14-00100.1

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Tucker CJ et al (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Article  Google Scholar 

  • Vialard J, Menkes C, Boulanger JP, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–1998 El Niño. J Phys Oceanogr 31:1649–1675

    Article  Google Scholar 

  • Wang HJ (2000) The interannual variability of East Asian monsoon and its relationship with SST in a coupled atmosphere-ocean-land climate model. Adv Atmos Sci 17:31–47

    Article  Google Scholar 

  • Wang HJ (2002) The instability of the East Asian summer monsoon–ENSO relations. Adv Atmos Sci 19:1–11

    Article  Google Scholar 

  • Wang HJ (2012) Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chin Sci Bull 57:3535–3540

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang J, Rich P, Price K (2003) Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int J Remote Sens 24:2345–2364

    Article  Google Scholar 

  • Watanabe M, ** FF (2002) Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys Res Lett 29:116-1–116-4

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  • Weiss JL, Gutzler DS, Coonrod JEA, Dahm CN (2004) Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. J Arid Environ 58:249–272

    Article  Google Scholar 

  • **e SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730

    Article  Google Scholar 

  • Xu JJ, Zhu QG, Zhou TH (1998) Monsoon circulation related to ENSO phase-locking. Adv Atmos Sci 15:267–276

    Article  Google Scholar 

  • Yang S (1996) ENSO–snow–monsoon associations and seasonal–interannual predictions. Int J Climatol 16:125–134

    Article  Google Scholar 

  • Yang J, Liu Q, **e SP, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:155–164

    Google Scholar 

  • Zhou BT (2011) Linkage between winter sea surface temperature east of Australia and summer precipitation in the Yangtze River valley and a possible physical mechanism. Chin Sci Bull 56:1821–1827

    Article  Google Scholar 

  • Zhou W, Wang X, Zhou TJ, Li C, Chan JCL (2007) Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteorol Atmos Phys 98:283–293

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Gensuo Jia for hel** us process the NDVI data. This research was jointly supported by the National Natural Science Foundation of China (Grants 41325018, 41575079, 41175071, 41421004) and Foundation of Chinese Academy of Science innovative International Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Fan, K. & Xu, Z. Asymmetric response in Northeast Asia of summer NDVI to the preceding ENSO cycle. Clim Dyn 47, 2765–2783 (2016). https://doi.org/10.1007/s00382-016-2996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-2996-8

Keywords

Navigation