Log in

Signals of the South China Sea summer rainfall variability in the Indian Ocean

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The present study investigates signals of the South China Sea (SCS) summer rainfall variability in the Indian Ocean. It is found that the SCS summer rainfall has a negative relationship with December–January–February (DJF) western-equatorial Indian Ocean (WIO) sea surface temperature (SST), a positive relationship with an asymmetric mode of precipitation anomalies in the tropical Indian Ocean during March–April–May (MAM), and a positive relationship with June–July–August (JJA) South Indian Ocean (SIO) SST. The WIO SST anomalies induce same-sign southeast Indian Ocean SST anomalies through an anomalous zonal vertical circulation. The southeast Indian Ocean SST anomalies last from late winter to early summer and induce opposite-sign SCS summer rainfall anomalies via an anomalous meridional vertical circulation. The asymmetric mode influences the SCS summer rainfall variation via the North Indian Ocean (NIO) SST anomalies with significant cloud–radiation and wind–evaporation effect. Positive (negative) SIO SST anomalies drive an anomalous direct circulation between the SIO and the NIO, and an anomalous indirect circulation between the NIO and the SCS which facilitates the occurrence of cyclonic (anti–cyclonic) wind anomalies over the SCS–western North Pacific and results in positive (negative) SCS summer rainfall anomalies. Partial correlation analysis indicates that the influence of DJF WIO SST anomalies and JJA SIO SST anomalies on the SCS summer rainfall is partly ENSO-independent, while the MAM asymmetric mode is mostly related to the preceding DJF eastern Pacific SST anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A et al (2003) The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific1. Mon Weather Rev 97(3):163–172

    Article  Google Scholar 

  • Chen JP, Wu R, Wen ZP (2012) Contribution of South China Sea tropical cyclones to an increase in southern China summer rainfall around 1993. Adv Atmos Sci 29(3):585–598

    Article  Google Scholar 

  • Chen Z, Wen ZP, Wu R, Zhao P, Cao J (2014) Influence of two types of El Niños on the East Asian climate during boreal summer: a numerical study. Clim Dyn 43(1–2):469–481

    Article  Google Scholar 

  • Cook KH, Meehl GA, Arblaster JM (2012) Monsoon regimes and processes in CCSM4, part 2: African and American monsoon systems. J Clim 25(8):2609–2621

    Article  Google Scholar 

  • Du Y, **e SP, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J Clim 22(8):2023–2038

    Article  Google Scholar 

  • Du Y, Yang L, **e SP (2011) Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J Clim 24(1):315–322

    Article  Google Scholar 

  • Feng X, Wu R, Chen J, Wen ZP (2013) Factors for interannual variations of September–October rainfall in Hainan, China. J Clim 26(22):8962–8978

    Article  Google Scholar 

  • Gill A (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462

    Article  Google Scholar 

  • He Z, Wu R (2013) Seasonality of interannual atmosphere–ocean interaction in the South China Sea. J Oceanogr 69(6):699–712

    Article  Google Scholar 

  • He Z, Wu R (2014) Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Clim Dyn 42:2323–2337

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kay JE, Deser C, Phillips A et al (2014) The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00255.1

    Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kopparla P, Fischer EM, Hannay C, Knutti R (2013) Improved simulation of extreme precipitation in a high-resolution atmosphere model. Geophys Res Lett 40(21):5803–5808

    Article  Google Scholar 

  • Li CY, Zhang LP (1999) Summer monsoon activities in the South China Sea and its impacts. Chin J Atmos Sci 23(3):257–266 (in Chinese)

    Article  Google Scholar 

  • Li S, Lu J, Huang G, Hu K (2008) Tropical Indian Ocean basin warming and East Asian summer monsoon: a multiple AGCM study. J Clim 21(22):6080–6088

    Article  Google Scholar 

  • Marsh DR, Mills MJ, Kinnison DE et al (2013) Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J Clim 26(19):7372–7391

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44(1):25–43

    Google Scholar 

  • Meehl GA, Arblaster JM, Caron JM et al (2012) Monsoon regimes and processes in CCSM4, part 1: the Asian–Australian monsoon. J Clim 25(8):2583–2608

    Article  Google Scholar 

  • Qu TD, Kim YY, Yaremchun M et al (2004) Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J Clim 17:3644

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363

    Google Scholar 

  • Vertenstein M, Craig T, Middleton A, Feddema D, Fischer C (2011) CESM1. 0.4 User’s Guide. NCAR. http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_4/x42.html. Accessed 2011

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang CZ, Wang WQ, Wang DX, Wang Q (2006) Interannual variability of the South China Sea associated with El Niño. J Geophys Res 111:C03023. doi:10.1029/2005JC003333

    Google Scholar 

  • Wu R (2009) Possible role of the Indian Ocean in the out-of-phase transition of the Australian to Indian summer monsoon. J Clim 22(7):1834–1849

    Article  Google Scholar 

  • Wu R, Yeh SW (2010) A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J Geophys Res 115:D08101. doi:10.1029/2009JD012999

    Google Scholar 

  • Wu GX, Li JP, Zhou TJ et al (2006a) The key regions affecting the short-term climate variations in China: the joining area of Asia and Indian-Pacific Ocean. Adv Earth Sci 21(11):1109–1118 (in Chinese)

    Google Scholar 

  • Wu R, Kirtman BP, Pegion K (2006b) Local air-sea relationship in observations and model simulations. J Clim 19:4914–4932

    Article  Google Scholar 

  • Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res 113:D05104. doi:10.1029/2007JD009316

    Google Scholar 

  • Wu L, Wen Z, Huang R, Wu R (2012) Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon Weather Rev 140:140–150

    Article  Google Scholar 

  • Wu R, Chen JP, Wen ZP (2013) Precipitation–surface temperature relationship in the IPCC CMIP5 models. Adv Atmos Sci 30:766–778

    Article  Google Scholar 

  • Wu R, Huang G, Du Z, Hu K (2014a) Cross–season relation of the South China Sea precipitation variability between winter and summer. Clim Dyn 43(1–2):193–207

    Article  Google Scholar 

  • Wu R, Chen W, Wang G, Hu KM (2014b) Relative contribution of ENSO and East Asian winter monsoon to the South China Sea SST anomalies during ENSO decaying years. J Geophys Res 119(19):5046–5064. doi:10.1002/2013JD021095

    Google Scholar 

  • **e SP, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Yang J, Liu Q, **e SP, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. doi:10.1029/2006GL028571

    Google Scholar 

  • Yu L, ** X, Weller RA (2008) Multidecade global flux datasets from the Objectively Analyzed Air–sea Fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, Woods Hole. Massachusetts, p 64

  • Yuan Y, Zhou W, Chan JC, Li C (2008a) Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset. Int J Climatol 28(12):1579–1587

    Article  Google Scholar 

  • Yuan Y, Yang H, Zhou W, Li C (2008b) Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int J Climatol 28(14):1849–1859

    Article  Google Scholar 

  • Zhan R, Wang Y, Lei X (2011) Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J Clim 24(2):509–521

    Article  Google Scholar 

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinement of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:10.1029/2003JD00445

    Article  Google Scholar 

  • Zhang S, Harrison MJ, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135:3541–3564

    Article  Google Scholar 

  • Zhu J, Huang B, Balmaseda MA (2012) An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products. Clim Dyn 39(3–4):1001–1020

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the comments of two anonymous reviewers. This study is supported by the National Key Basis Research Program of China grant (2014CB953902), the Hong Kong Research Grant Council Grant (CUHK403612), the CAS/SAFEA International Partnership Program for Creative Research Teams, the Strategic Priority Research Program (XDA11010301), and the National Natural Science Foundation of China Grants (41275081, 41475081, and 41376024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Wu, R. & Wang, W. Signals of the South China Sea summer rainfall variability in the Indian Ocean. Clim Dyn 46, 3181–3195 (2016). https://doi.org/10.1007/s00382-015-2760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2760-5

Keywords

Navigation