Log in

Indo-Pacific remote forcing in summer rainfall variability over the South China Sea

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates summer rainfall variability in the South China Sea (SCS) region and the roles of remote sea surface temperature (SST) forcing in the tropical Indian and Pacific Ocean regions. The SCS summer rainfall displays a positive and negative relationship with simultaneous SST in the equatorial central Pacific (ECP) and the North Indian Ocean (NIO), respectively. Positive ECP SST anomalies induce an anomalous low-level cyclone over the SCS-western North Pacific as a Rossby-wave type response, leading to above-normal precipitation over northern SCS. Negative NIO SST anomalies contribute to anomalous cyclonic winds over the western North Pacific by an anomalous east–west vertical circulation north of the equator, favoring more rainfall over northern SCS. These NIO SST anomalies are closely related to preceding La Niña and El Niño events through the “atmospheric bridge”. Thus, the NIO SST anomalies serve as a medium for an indirect impact of preceding ECP SST anomalies on the SCS summer rainfall variability. The ECP SST influence is identified to be dominant after 1990 and the NIO SST impact is relatively more important during 1980s. These Indo-Pacific SST effects are further investigated by conducting numerical experiments with an atmospheric general circulation model. The consistency between the numerical experiments and the observations enhances the credibility of the Indo-Pacific SST influence on the SCS summer rainfall variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Chen JP, Wu R, Wen ZP (2012) Contribution of South China Sea tropical cyclones to an increase in southern China summer rainfall around 1993. Adv Atmos Sci 29(3):585–598

    Article  Google Scholar 

  • Chen Z, Wen ZP, Wu R, Zhao P, Cao J (2014a) Influence of two types of El Niños on the East Asian climate during boreal summer: a numerical study. Clim Dyn. doi:10.1007/s00382-013-1943-1

    Google Scholar 

  • Chen JP, Wen ZP, Wu R, Chen Z, Zhao P (2014b) Interdecadal changes in the relationship between Southern China winter-spring precipitation and ENSO. Clim Dyn. doi:10.1007/s00382-013-1947-x

    Google Scholar 

  • Collins WD, Rasch PJ, Boville BA et al (2006) The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19:2144–2161

    Article  Google Scholar 

  • Cook KH, Meehl GA, Arblaster JM (2012) Monsoon regimes and processes in CCSM4, part 2: African and American monsoon systems. J Clim 25(8):2609–2621

    Article  Google Scholar 

  • Ding YH (1994a) Asian monsoon. China Meteorological Press, Bei**g, pp 105–113 (in Chinese)

    Google Scholar 

  • Ding YH (1994b) Monsoons over China. Kluwer Academic, Dordrecht

    Google Scholar 

  • Eaton B (2012) User’s guide to the Community Atmosphere Model CAM-5.1.1. NCAR. http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/ug5_1_1/ug.html

  • He ZQ, Wu R (2013a) Coupled seasonal variability in the South China Sea. J Oceanogr 69(1):57–69

    Article  Google Scholar 

  • He ZQ, Wu R (2013b) Seasonality of interannual atmosphere–ocean interaction in the South China Sea. J Oceanogr 69(6):699–712

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DEO AMIP-II reanalysis (R-2). Bull Atmos Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kay JE, Hillman BR, Klein SA et al (2012) Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J Clim 25:5190–5207

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2002) ENSO Warm (El Niño) and Cold (La Niña) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Climate 15:1118–1140

    Article  Google Scholar 

  • Lau NC, Nath MJ (2003) Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20

    Article  Google Scholar 

  • Li CY, Zhang LP (1999) Summer monsoon activities in the South China Sea and its impacts. Chin J Atmos Sci 23(3):257–266 (in Chinese)

    Article  Google Scholar 

  • Li S, Lu J, Huang G, Hu K (2008) Tropical Indian Ocean basin warming and East Asian summer monsoon: a multiple AGCM study. J Clim 21:6080–6088

    Article  Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44(17):2418–2436

    Article  Google Scholar 

  • Liu QY, Jiang X, **e SP, Liu WT (2004) A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: seasonal development and interannual variability. J Geophys Res 109:C07012. doi:10.1029/2003JC002179

    Google Scholar 

  • Meehl GA, Arblaster JM, Caron JM et al (2012) Monsoon regimes and processes in CCSM4, part 1: the Asian–Australian monsoon. J Clim 25(8):2583–2608

    Article  Google Scholar 

  • Muñoz E, Weijer W, Grodsky SA et al (2012) Mean and variability of the tropical Atlantic Ocean in the CCSM4. J Clim 24(14):4860–4882

    Article  Google Scholar 

  • Neale RB, Richter J, Park S et al (2013) The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J Clim 26(14):5150–5168

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Tao SY, Chen LX (1987) A review of recent research of the East Asian summer monsoon in China. In: Chang CP, Krishnamurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford, pp 60–92

    Google Scholar 

  • Vertenstein M, Craig T, Middleton A, Feddema D, Fischer C (2011) CESM1. 0.4 user’s guide. NCAR. http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_4/x42.html

  • Wang B, Zhang Q (2002) Pacific-East Asian teleconnection part II: how the Philippine Sea anomalous anticyclone is established during El Niño development. J Clim 15:3252–3265

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu R, Li T (2003) Atmosphere–Warm Ocean interaction and its impacts on Asian–Australian monsoon variation. J Clim 16:1195–1211

    Article  Google Scholar 

  • Wang CZ, Wang WQ, Wang DX, Wang Q (2006) Interannual variability of the South China Sea associated with El Niño. J Geophys Res 111:C03023. doi:10.1029/2005JC003333

    Google Scholar 

  • Wang GH, Su JL, Ding YH, Chen D (2007) Tropical cyclone genesis over the South China Sea. J Mar Syst 68:318–326

    Article  Google Scholar 

  • Wu R, Kirtman BP (2007) Regimes of local air-sea interactions and implications for performance of forced simulations. Clim Dyn 29:393–410

    Article  Google Scholar 

  • Wu R, Kirtman BP (2011) Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST. Clim Dyn 37(7–8):1533–1550

    Article  Google Scholar 

  • Wu R, Wang B (2000) Interannual variability of summer monsoon onset over the western North Pacific and the underlying processes. J Climate 13:2483–2501

    Article  Google Scholar 

  • Wu GX, Li JP, Zhou TJ et al (2006) The key regions affecting the short-term climate variations in China: the joining area of Asia and Indian-Pacific Ocean. Adv Earth Sci 21(11):1109–1118 (in Chinese)

    Google Scholar 

  • Wu R, Wen ZP, Yang S, Li Y (2010) An interdecadal change in southern China summer rainfall around 1992/93. J Clim 23(9):2389–2403

    Article  Google Scholar 

  • Wu R, Chen J, Chen W (2012) Different types of ENSO influences on the Indian summer monsoon variability. J Clim 25(3):903–920

    Article  Google Scholar 

  • Wu R, Huang G, Du Z, Hu K (2014) Cross-season relation of the South China Sea precipitation variability between winter and summer. Clim Dyn. doi:10.1007/s00382-013-1820-y

    Google Scholar 

  • **e SP, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Yang J, Liu Q, **e SP, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. doi:10.1029/2006GL028571

    Article  Google Scholar 

  • Yu L, ** X, Weller RA (2008) Multidecade global flux datasets from the Objectively Analyzed Air–sea Fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux project technical report, OA-2008-01

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinement of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:10.1029/2003JD00445

    Article  Google Scholar 

  • Zhou TJ, Yu RC (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res 110:D08104. doi:10.1029/2004JD005413

    Google Scholar 

Download references

Acknowledgments

This study is supported by the National Basis Research Program of China grant (2014CB953902), the Hong Kong Research Grant Council Grant (CUHK403612), and the National Natural Science Foundation of China Grant (41275081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Z., Wu, R. Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Clim Dyn 42, 2323–2337 (2014). https://doi.org/10.1007/s00382-014-2123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2123-7

Keywords

Navigation