Log in

The nonpeptide AVE0991 attenuates myocardial hypertrophy as induced by angiotensin II through downregulation of transforming growth factor-β1/Smad2 expression

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The nonpeptide AVE0991 is expected to be a putative new drug for cardiovascular diseases. However, the mechanisms for the cardioprotective actions of AVE0991 are still not fully understood. We planned to determine whether AVE0991 attenuates the angiotensin II (AngII)-induced myocardial hypertrophy and whether these AVE0991 effects involved transforming growth factor β1 (TGF-β1) and Smad2. A rat model of neonatal myocardial hypertrophy was induced by AngII. The AngII group significantly increased in protein content, surface area, and [3H]leucine incorporation efficiency by cardiomyocytes, compared to those of the control group (P < 0.01). The AngII group also had elevated TGF-β1 and Smad2 expression (P < 0.01). These AngII-induced changes were significantly attenuated by AVE0991 in a dose-dependent manner. In our study, these actions of AngII (10−6 mol/l) were significantly inhibited by both concentrations of AVE0991 (10−5 mol/l and 10−7 mol/l). Moreover, the high AVE0991 group had significantly better inhibition of myocardial hypertrophy than the low AVE0991 group. Meanwhile, the beneficial effects of AVE0991 were completely abolished when the cardiomyocytes were pretreated with Ang-(1–7) receptor antagonist A-779 (10−6 mol/l). These results suggested that AVE0991 prevented AngII-inducing myocardial hypertrophy in a dose-dependent fashion, a process that may be associated with the inhibition of TGF-β1/Smad2 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park EY, Ahn HM, Lee JA, Lee JA, Hong YM (2009) Insertion/deletion polymorphism of angiotensin converting enzyme gene in Korean hypertensive adolescents. Heart Vessels 24:193–198

    Article  PubMed  Google Scholar 

  2. Fernandes-Santos C, Mendonca LD, Mandarim-de-Lacerda CA (2009) Favorable cardiac and aortic remodeling in olmesartantreated spontaneously hypertensive rats. Heart Vessels 24: 219–227

    Article  PubMed  Google Scholar 

  3. Santos RA, Campagnole-Santos MJ, Andrade SP (2000) Angiotensin-(1–7): an update. Regul Pept 91(1-3):45–62

    Article  CAS  PubMed  Google Scholar 

  4. Ferrario CM, Chappell MC, Dean RH, Iyer SN (1998) Novel angiotensin peptides regulate blood pressure, endothelial function, and natriuresis. J Am Soc Nephrol 9(9):1716–1722

    CAS  PubMed  Google Scholar 

  5. Zohn IE, Symons M, Chrzanowska-Wodnicka M, Westwick JK, Der CJ (1998) Mas oncogene signaling and transformation require the small GTP-binding protein Rac. Mol Cell Biol 18(3): 1225–1235

    CAS  PubMed  Google Scholar 

  6. Santos RAS, Simoes e Silva AC, Maric C, Silva DMR, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SVB, Lopes MT, Bader M, Mendes EP, Soares Lemos V, Campagnole-Santos MJ, Schultheiss H-P, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas Proc Natl Acad Sci USA 100(14): 8258–8263

    Article  CAS  Google Scholar 

  7. Simões e Silva AC, Bello AP, Baracho NC, Khosla MC, Santos RA (1998) Diuresis and natriuresis produced by long term administration of a selective angiotensin(1–7) antagonist in normotensive and hypertensive rats. Regul Pept 74:177–184

    Article  PubMed  Google Scholar 

  8. Wiemer G, Dobrucki LW, Louka FR, Malinski T, Heitsch H (2002) AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1–7) on the endothelium. Hypertension 40(6):847–852

    Article  CAS  PubMed  Google Scholar 

  9. Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS (1998) Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res 40(2):352–363

    Article  CAS  PubMed  Google Scholar 

  10. Seo D, Hare JM (2007) The transforming growth factor-beta/Smad3 pathway: coming of age as a key participant in cardiac remodeling. Circulation 116(19):2096–2098

    Article  PubMed  Google Scholar 

  11. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118(1):10–24

    Article  CAS  PubMed  Google Scholar 

  12. Singh BP, Sridhara S, Arora N, Gangal SV (1992) Evaluation of protein assay methods for pollen and fungal spore extracts. Biochem Int 27(3):477–484

    CAS  PubMed  Google Scholar 

  13. Toraason M, Krueger JA, Busch KA, Shaw PB (1990) Automated surface area measurement of cultured cardiac myocytes. Cytotechnology 4(2):155–161

    Article  CAS  PubMed  Google Scholar 

  14. Pinheiro SV, Simoes e Silva AC, Sampaio WO, de Paula RD, Mendes EP, Bontempo ED, Pesquero JB, Walther T, Alenina N, Bader M, Bleich M, Santos RA (2004) Nonpeptide AVE 0991 is an angiotensin-(1–7) receptor Mas agonist in the mouse kidney. Hypertension 44(4):490–496

    Article  CAS  PubMed  Google Scholar 

  15. Iwata M, Cowling RT, Gurantz D, Moore C, Zhang S, Yuan JX, Greenberg BH (2005) Angiotensin-(1–7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol 289(6):H2356–H2363

    Article  CAS  PubMed  Google Scholar 

  16. Loot AE, Roks AJ, Henning RH, Tio RA, Suurmeijer AJ, Boomsma F, van Gilst WH (2002) Angiotensin-(1–7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105(13):1548–1550

    Article  CAS  PubMed  Google Scholar 

  17. Danilczyk U, Penninger JM (2006) Angiotensin-converting enzyme II in the heart and the kidney. Circ Res 98(4):463–471

    Article  CAS  PubMed  Google Scholar 

  18. Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259: 610–618

    Google Scholar 

  19. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74(2):184–195

    Article  CAS  PubMed  Google Scholar 

  20. Wenzel S, Taimor G, Piper HM, Schlüter K-D (2001) Redoxsensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-b expression in adult ventricular cardiomyocytes, FASEB J 15:2291–2293

    CAS  PubMed  Google Scholar 

  21. Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ (2007) Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol 292(2):H736–H742

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Gui He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, JG., Chen, SL., Huang, YY. et al. The nonpeptide AVE0991 attenuates myocardial hypertrophy as induced by angiotensin II through downregulation of transforming growth factor-β1/Smad2 expression. Heart Vessels 25, 438–443 (2010). https://doi.org/10.1007/s00380-009-1213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-009-1213-7

Key words

Navigation