Log in

Robust principal component analysis via weighted nuclear norm with modified second-order total variation regularization

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The traditional robust principal component analysis (RPCA) model aims to decompose the original matrix into low-rank and sparse components and uses the nuclear norm to describe the low-rank prior information of the natural image. In addition to low-rankness, it has been found in many recent studies that local smoothness is also crucial prior in low-level vision. In this paper, we propose a new RPCA model based on weight nuclear norm and modified second-order total variation regularization (WMSTV-RPCA for short), which exploits both the global low-rankness and local smoothness of the matrix. Extensive experimental results show, both qualitatively and quantitatively, that the proposed WMSTV-RPCA can more effectively remove noise, and model dynamic scenes compared with the competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? JACM 58(3), 1–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. Adv. Neural Inf. Process. Syst. 22, 2080–2088 (2009)

    Google Scholar 

  3. Croux, C., Haesbroeck, G.: Principal component analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies. Biometrika 87(3), 603–618 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, F., Wang, J., Wang, W., Xu, C.: Low-tubal-rank plus sparse tensor recovery with prior subspace information. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3492–3507 (2020)

    Article  Google Scholar 

  6. Gu, S., **e, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121, 183–208 (2017)

    Article  MATH  Google Scholar 

  7. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2862–2869 (2014)

  8. Chen, W.: Simultaneously sparse and low-rank matrix reconstruction via nonconvex and nonseparable regularization. IEEE Trans. Signal Process. 66(20), 5313–5323 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wen, F., Ying, R., Liu, P., Qiu, R.C.: Robust pca using generalized nonconvex regularization. IEEE Trans. Circuits Syst. Video Technol. 30(6), 1497–1510 (2019)

    Article  Google Scholar 

  10. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  11. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, D., Hu, Y., Ye, J., Li, X., He, X.: Matrix completion by truncated nuclear norm regularization. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2192–2199. IEEE (2012)

  14. **e, Y., Gu, S., Liu, Y., Zuo, W., Zhang, W., Zhang, L.: Weighted Schatten \( p \)-norm minimization for image denoising and background subtraction. IEEE Trans. Image Process. 25(10), 4842–4857 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, G., Guo, G., Peng, S., Wang, C., Yu, S., Niu, J., Mo, J.: Matrix completion via Schatten capped \( p \) norm. IEEE Trans. Knowl. Data Eng. 34(1), 394–404 (2020)

    Google Scholar 

  16. Hong, M., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008)

  19. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Recovery 9(263–340), 227 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Han, X., Wu, J., Wang, L., Chen, Y., Senhadji, L., Shu, H.: Linear total variation approximate regularized nuclear norm optimization for matrix completion. In: Abstract and Applied Analysis, vol. 2014. Hindawi (2014)

  22. Wang, W., Wang, J.: Enhancing matrix completion using a modified second-order total variation. Discrete Dyn. Nat. Soc. (2018). https://doi.org/10.1155/2018/2598160

    Article  MathSciNet  MATH  Google Scholar 

  23. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, W., Zhang, F., Wang, J.: Low-rank matrix recovery via regularized nuclear norm minimization. Appl. Comput. Harmon. Anal. 54, 1–19 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  26. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. ar**v:1009.5055 (2010)

  27. Benner, P., Li, R.C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233(4), 1035–1045 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hu, Y., Zhang, D., Ye, J., Li, X., He, X.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2012)

    Article  Google Scholar 

  30. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2019)

    Article  Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  32. Zheng, Y., Liu, G., Sugimoto, S., Yan, S., Okutomi, M.: Practical low-rank matrix approximation under robust l 1-norm. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1410–1417. IEEE (2012)

  33. Meng, D., De La Torre, F.: Robust matrix factorization with unknown noise. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1337–1344 (2013)

  34. Wang, N., Yao, T., Wang, J., Yeung, D.Y.: A probabilistic approach to robust matrix factorization. In: Proceedings of the 12th European conference on Computer Vision-Volume Part VII (ECCV), pp. 126–139 (2012)

  35. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE International Conference on Computer Vision (ICCV) (2002)

  36. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process. 13(11), 1459–1472 (2004)

    Article  Google Scholar 

  37. Peng, J., Wang, Y., Zhang, H., Wang, J., Meng, D.: Exact decomposition of joint low rankness and local smoothness plus sparse matrices. IEEE Trans. Pattern Anal. Mach. Intell. 45, 5766–5781 (2022)

    Google Scholar 

  38. Tian, D., Tao, D.: Coupled learning for facial deblur. IEEE Trans. Image Process. 25(2), 961–972 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Diwakar, M., Kumar, M.: A review on CT image noise and its denoising. Biomed. Signal Process. Control 42, 73–88 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Y., Liu, X., Zhou, M. et al. Robust principal component analysis via weighted nuclear norm with modified second-order total variation regularization. Vis Comput 39, 3495–3505 (2023). https://doi.org/10.1007/s00371-023-02960-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02960-5

Keywords

Navigation