Log in

Semi-Supervised image dehazing network

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A semi-supervised image dehazing network was proposed which consists of the supervised branch and the unsupervised branch. In the supervision branch, the encoding–decoding neural network is used as the network structure, and the network is constrained by the supervision loss. In the unsupervised branch, two similar sub-networks are used to estimate the transmission map and atmospheric light, and the unsupervised loss is constructed through prior knowledge to constrain the unsupervised branch. In the semi-supervised image dehazing network, the supervised branch and the unsupervised branch will output dehazing result, respectively. Then by minimizing the reconstruction loss between the two images, the supervised and unsupervised branches are constrained to make the network more generalizable. The entire semi-supervised image dehazing network is trained in an end-to-end manner, and the supervised and unsupervised branch shares weights in the encoding part. Extensive experimental results show that the proposed method has good performance in image dehazing compared with six advanced dehazing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McCartney, Earl J.: Optics of the atmosphere: scattering by molecules and particles. New York (1976)

  2. Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. Proc. Seventh IEEE Int. Conf. Comput. Vision (1999). https://doi.org/10.1109/ICCV.1999.790306

    Article  Google Scholar 

  3. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  4. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  Google Scholar 

  5. Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. 2017 IEEE International Conference on Computational Photography (ICCP) (2017). https://doi.org/10.1109/ICCPHOT.2017.7951489

  6. Berman, D., Avidan, S.: Non-local image dehazing. Proceedings of the IEEE conference on computer vision and pattern recognition. 1674–1682 (2016)

  7. IUBC PRIOR: Single image de-haze under non-uniform illumination using bright channel prior. J. Theor. Appl. Inform. Technol. 48(3), 1–6 (2013)

    Google Scholar 

  8. Liu, X., Zhang, H., Cheung, Y.M., You, X., Tang, Y.Y.: Efficient single image dehazing and denoising: an efficient multi-scale correlated wavelet approach. Comput. Vis. Image Underst. 162, 23–33 (2017)

    Article  Google Scholar 

  9. Liu, X., Zhang, H., Tang, Y.Y., Du, J.X.: Scene-adaptive single image dehazing via opening dark channel model. IET Image Process. 10(11), 877–884 (2016)

    Article  Google Scholar 

  10. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H.: Single image dehazing via multi-scale convolutional neural networks. Comput. Vis. ECCV. 9906, 154–169 (2016)

    Google Scholar 

  11. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  12. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network. Proc. IEEE Int. Conf. Comput. Vis. 4770–4778 (2017)

  13. Zhang, H., Patel, V. M.: Densely connected pyramid dehazing network. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 3194–3203 (2018)

  14. Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M. H.: Gated fusion network for single image dehazing. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 3253–3261 (2018)

  15. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 9446–9454 (2018)

  16. Gandelsman, Y., Shocher, A., Irani, M.: "Double-DIP": Unsupervised image decomposition via coupled deep-image-priors. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 11026–11035 (2019)

  17. An, S., Huang, X., Zheng, Z., Wang, L.: An end-to-end sea fog removal network using multiple scattering model. Plos one. 16(5), e0251337 (2021

  18. Qin, X., Wang, Z., Bai, Y., **e, X., Jia, H.: Ffa-net: feature fusion attention network for single image dehazing. Proc. AAAI Conf. Artif. Intell. 34(7), 11908–11915 (2020)

    Google Scholar 

  19. Wang, Y., Zhuo, S., Tao, D., Bu, J., Li, N.: Automatic local exposure correction using bright channel prior for under-exposed images. Signal Process. 93(11), 3227–3238 (2013)

    Article  Google Scholar 

  20. Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 20(5), 1185–1198 (2010)

    Article  MathSciNet  Google Scholar 

  21. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Zhai, G., Min, X.: Perceptual image quality assessment: a survey. Sci. China Inf. Sci. 63, 1–52 (2020)

    Article  Google Scholar 

  24. Choi, L.K., You, J., Bovik, A.C.: Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans. Image Process. 24(11), 3888–3901 (2015)

    Article  MathSciNet  Google Scholar 

  25. Zhang, J., Min, X., Zhu, Y., Zhai, G., Zhou, J., Yang, X., Zhang, W.: HazDesNet: an end-to-end network for haze density prediction. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3030673

    Article  Google Scholar 

  26. Min, X., Zhai, G., Gu, K., Zhu, Y., Zhou, J., Guo, G., Zhang, W.: Quality evaluation of image dehazing methods using synthetic hazy images. IEEE Trans. Multimedia. 21(9), 2319–2333 (2019)

    Article  Google Scholar 

  27. Min, X., Zhai, G., Gu, K., Yang, X., Guan, X.: Objective quality evaluation of dehazed images. IEEE Trans. Intell. Transp. Syst. 20(8), 2879–2892 (2018)

    Article  Google Scholar 

  28. Li, B., Gou, Y., Gu, S., Liu, J.Z., Zhou, J.T., Peng, X.: You only look yourself: unsupervised and untrained single image dehazing neural network. Int. J. Comput. Vis. 129(5), 1754–1767 (2021)

    Article  Google Scholar 

  29. Chen, D., He, M., Fan, Q., Liao, J., Zhang, L., Hou, D., Hua, G.: Gated context aggregation network for image dehazing and deraining. IEEE Winter Conf Appl Comput Vis (2019). https://doi.org/10.1109/WACV.2019.00151

    Article  Google Scholar 

  30. Engin, D., Genç, A., Kemal Ekenel, H.: Cycle-dehaze: Enhanced cyclegan for single image dehazing. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops. 825–833 (2018)

  31. Sidorov, O., Yngve Hardeberg, J.: Deep hyperspectral prior: Single-image denoising, inpainting, super-resolution. Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops. 0–0 (2019)

  32. Gou, Y., Li, B., Liu, Z., Yang, S., Peng, X.: CLEARER: Multi-Scale Neural Architecture Search for Image Restoration. Adv. Neural Inform. Proc. Syst. 33 (2020)

  33. Wu, H., Prasad, S.: Semi-supervised deep learning using pseudo labels for hyperspectral image classification. IEEE Trans. Image Process. 27(3), 1259–1270 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wei, Y., Zhang, Z., Wang, Y., Zhang, H., Zhao, M., Xu, M., Wang, M.: Semi-Deraingan: a new semi-supervised single image deraining. Proc. (IEEE Int. Conf. Multimed. Expo.) (2021). https://doi.org/10.1109/ICME51207.2021.9428285

    Article  Google Scholar 

  35. Li, L., Dong, Y., Ren, W., Pan, J., Gao, C., Sang, N., Yang, M.H.: Semi-supervised image dehazing. IEEE Trans. Image Process. 29, 2766–2779 (2019)

    Article  Google Scholar 

  36. Xu, Z., Yang, X., Li, X., Sun, X.: The effectiveness of instance normalization: a strong baseline for single image dehazing. ar**v preprint ar**v:1805.03305 (2018)

  37. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. ar**v preprint ar**v:1505.00853 (2015)

  38. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. Comput Vis ECCV. 694–711 (2016)

  39. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmin An.

Ethics declarations

Conflict of interest

Author Shunmin An declares that he has no conflict of interest. Author **xia Huang declares that she has no conflict of interest. Author Le Wang declares that he has no conflict of interest. Author Linling Wang declares that she has no conflict of interest. Author Zhang**g Zheng declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, S., Huang, X., Wang, L. et al. Semi-Supervised image dehazing network. Vis Comput 38, 2041–2055 (2022). https://doi.org/10.1007/s00371-021-02265-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02265-5

Keywords

Navigation