Log in

Motion capture data recovery using skeleton constrained singular value thresholding

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Motion capture data could be missing due to imperfections during the acquisition process. Singular value thresholding (SVT) is an effective method to recover missing motion capture data. However, its effectiveness decreases significantly when markers are missing for longer periods of time. To alleviate this problem, we utilize the fact that human bones are rigid to constrain inter-marker distances of specific sets of markers. We extend the SVT method for mocap recovery to include skeleton constraints. On average, our proposed method improves on the SVT method by 40 %, and performs 4 % better than a recent state-of-the-art method at up to 11 times faster computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Mocap data values are scaled down for algorithm stability as recommended, but are not transformed to local coordinates. All parameters are left at default values.

  2. All mocap data values in this paper are expressed in units from the CMU mocap database. To obtain values in millimetres, multiply them by 56.44.

References

  1. Aristidou, A., Cameron, J., Lasenby, J.: Real-time estimation of missing markers in human motion capture. In: The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008, pp. 1343–1346 (2008)

  2. Aristidou, A., Lasenby, J.: Real-time marker prediction and CoR estimation in optical motion capture. Visual Comput. 29(1), 7–26 (2013)

    Article  Google Scholar 

  3. Baumann, J., Krüger, B., Zinke, A., Weber, A.: Data-driven completion of motion capture data. In: Proceedings of Workshop on Virtual reality interaction and physical simulation (VRIPHYS) (2011)

  4. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Candès, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chai, J., Hodgins, J.K.: Performance animation from low-dimensional control signals. ACM Trans. Graph. 24(3), 686–696 (2005)

    Article  Google Scholar 

  7. CMU: CMU graphics lab motion capture database. http://mocap.cs.cmu.edu/ (2012)

  8. Dorfmüller-Ulhaas, K.: Robust optical user motion tracking using a kalman filter. In: 10th ACM Symposium on Virtual Reality Software and Technology (2003)

  9. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04, pp. 522–531. ACM, New York, NY, USA (2004)

  10. Herda, L., Fua, P., Plankers, R., Boulic, R., Thalmann, D.: Skeleton-based motion capture for robust reconstruction of human motion. In: Computer Animation 2000. Proceedings, pp. 77–83 (2000)

  11. Herda, L., Fua, P., Plänkers, R., Boulic, R., Thalmann, D.: Using skeleton-based tracking to increase the reliability of optical motion capture. Hum. Mov. Sci. 20(3), 313–341 (2001)

    Article  Google Scholar 

  12. Hornung, A., Sar-Dessai, S., Kobbelt, L.: Self-calibrating optical motion tracking for articulated bodies. In: IEEE Virtual Reality, 2005. Proceedings. VR 2005, pp. 75–82 (2005)

  13. Hou, J., Chau, L.P., He, Y., Chen, J., Magnenat-Thalmann, N.: Human motion capture data recovery via trajectory-based sparse representation. In: Proc. IEEE International Conference on Image processing (ICIP) (2013)

  14. Hou, J., Bian, Z.-P., Chau, L.P., He, Y., Magnenat-Thalmann, N.: Restoring Corrupted Motion Capture Data via Jointly Low-Rank Matrix Recovery. In: Proc. IEEE International Conference on Multimedia & Expo (ICME) (2014)

  15. Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity searches in large motion capture databases. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer animation. SCA ’10, pp. 1–10. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2010)

  16. Lai, R., Yuen, P., Lee, K.: Motion capture data completion and denoising by singular value thresholding. In: Eurographics 2011-Short Papers, pp. 45–48 (2011)

  17. Lawrence, N.: Gaussian process latent variable models for visualisation of high dimensional data. In: S. Thrun, L. Saul, B. schölkopf (eds.) Advances in Neural Information Processing Systems 16, pp. 329–336. MIT Press, Cambridge, MA (2004)

  18. Li, L., McCann, J., Pollard, N., Faloutsos, C.: BoLeRO: a principled technique for including bone length constraints in motion capture occlusion filling. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer animation. SCA ’10, pp. 179–188. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2010)

  19. Li, L., McCann, J., Pollard, N.S., Faloutsos, C.: DynaMMo: mining and summarization of coevolving sequences with missing values. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 507–516. ACM, New York, NY, USA (2009)

  20. Liu, G., McMillan, L.: Estimation of missing markers in human motion capture. Visual Comput. 22(9–11), 721–728 (2006)

    Article  Google Scholar 

  21. Lou, H., Chai, J.: Example-based human motion denoising. IEEE Trans. Vis. Comput. Graph. 16(5), 870–879 (2010)

    Article  Google Scholar 

  22. Papadimitriou, S., Brockwell, A., Faloutsos, C.: Adaptive, hands-off stream mining. In: Proceedings of the 29th international conference on Very large data bases - Volume 29, VLDB ’03, pp. 560–571. VLDB Endowment (2003)

  23. Piazza, T., Lundström, J., Kunz, A., Fjeld, M.: Predicting missing markers in real-time optical motion capture. In: Proceedings of the 2009 international conference on Modelling the physiological human, p. 125–136. Springer (2009)

  24. Tan, C.H., Hou, J., Chau, L.P.: Human motion capture data recovery using trajectory-based matrix completion. Electron. Lett. 49(12), 752–754 (2013)

    Article  Google Scholar 

  25. Taylor, G.W., Hinton, G.E., Roweis, S.: Modeling human motion using binary latent variables. In: Advances in Neural Information Processing Systems, pp. 1345–1352. MIT Press, Cambridge, MA (2007)

  26. Wang, J., Fleet, D., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intel. 30(2), 283–298 (2008)

    Article  Google Scholar 

  27. Wiley, D., Hahn, J.: Interpolation synthesis for articulated figure motion. In: Virtual Reality Annual International Symposium, 1997, IEEE 1997, pp. 156–160 (1997)

  28. **ao, J., Feng, Y., Hu, W.: Predicting missing markers in human motion capture using l1-sparse representation. Comput. Anim. Virtual Worlds 22(2–3), 221–228 (2011)

    Article  Google Scholar 

  29. Yi, B.K., Sidiropoulos, N., Johnson, T., Jagadish, H., Faloutsos, C., Biliris, A.: Online data mining for co-evolving time sequences. In: 16th International Conference on Data engineering, 2000. Proceedings, pp. 13–22 (2000)

  30. Yi, P., Zhang, Q., Wei, X.: Laplacian coordinates-based motion transition for data-driven motion synthesis. IET Image Process. 6(9), 1331–1337 (2012)

    Article  MathSciNet  Google Scholar 

  31. Zhou, F., De la Torre, F., Hodgins, J.: Hierarchical aligned cluster analysis for temporal clustering of human motion. Pattern Anal. Mach. Intel. IEEE Trans. 35(3), 582–596 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lap-Pui Chau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, CH., Hou, J. & Chau, LP. Motion capture data recovery using skeleton constrained singular value thresholding. Vis Comput 31, 1521–1532 (2015). https://doi.org/10.1007/s00371-014-1031-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1031-5

Keywords

Navigation