Log in

Mesh blending

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A new method for smoothly connecting different patches on triangle meshes with arbitrary connectivity, called mesh blending, is presented. A major feature of mesh blending is to move vertices of the blending region to a virtual blending surface by choosing an appropriate parameterization of those vertices. Once blending is completed, the parameterization optimization is performed to perfect the final meshes. Combining mesh blending with multiresolution techniques, an effective blending technique for meshes is obtained. Our method has several advantages: (1) the user can intuitively control the blending result using different blending radii, (2) the shape of cross-section curves can be adjusted to flexibly design complex models, and (3) the resulting mesh has the same connectivity as the original mesh. In this paper, some examples about smoothing, sharpening, and mesh editing show the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alliez P, Meyer M, Desbrun M (2002) Interactive geometry remeshing. In: Proceedings of SIGGRAPH’02, pp 347–354

  2. Amenta N, Bern M (1999) Surface reconstruction by Voronoi filtering. Discrete Comput Geom 22(4):481–504

    Google Scholar 

  3. Barnhill RE, Farin GE, Chen Q (1993) Constant-radius blending of parametric surfaces. In: Farin GE, Hagen H, Noltemeier H (eds) Geometrie modeling. Springer, Berlin Heidelberg New York, pp 1–20

  4. Bernardini F, Mittleman J, Rushmeier H, Silva C, Taubin G (1999) The ball-pivoting algorithm for surface reconstruction. IEEE Trans Visual Comput Graph 5(4):349–359

    Article  Google Scholar 

  5. Biermann H, Kristjansson D, Zorin D (2001) Approximate boolean operations on free-form solids. In: Proceedings of SIGGRAPH’01, pp 185–194

  6. Botsch M, Kobbelt L (2001) Resampling feature and blend regions in polygonal meshes for surface anti-aliasing. In: Proceedings of Eurographics’01, pp 402–410

  7. Choi BK, Ju SY (1989) Constant-radius blending in surface modeling. Comput Aided Des 21(4):213–220

    Article  Google Scholar 

  8. Clarenz U, Diewald U, Rumpf M (2000) Anisotropic geometric diffusion in surface processing. In: Proceedings of IEEE Visualization 2000, Salt Lake City, UT, pp 397–405

  9. Desbrun M, Meyer M, Schröder P, Barr A (1999) Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of SIGGRAPH’99, pp 317–324

  10. Desbrun M, Meyer M, Schröder P, Barr AH (2000) Anisotropic feature-preserving denoising of height fields and bivariate data. In: Proceedings of Graphics Interface 2000, pp 145–152

  11. Desbrun M, Meyer M, Alliez P (2002) Intrinsic parameterizations of surface meshes. Comput Graph Forum 21(3):209–218

    Article  Google Scholar 

  12. Floater M (1997) Parameterization and smooth approximation of surface triangulations. Comput Aided Geom Des 14(3):231–250

    Article  Google Scholar 

  13. Floater M (2003) Mean value coordinates. Comput Aided Geom Des 20(1):19–27

    Article  Google Scholar 

  14. Guskov I, Sweldens W, Schröder P (1999) Multiresolution signal processing for meshes. In: Proceedings of SIGGRAPH’99, pp 325–334

  15. Hartmann E (2001) Parametric Gn-blending curves and surfaces. Visual Comput 17(1):1–13

    Google Scholar 

  16. Hermann T (1992) Rolling ball blends and self-intersections. In: Warren JD (eds) Curves and Surfaces in Computer Vision and Graphics III SPIE, pp 204–209

  17. Jones TR, Durand F, Desbrun M (2003) Non-iterative, feature-preserving mesh smoothing. In: Proceedings of SIGGRAPH’03, pp 943–949

  18. Kobbelt L, Botsch M (2000) An interactive approach to point cloud triangulation. In: Proceedings of Eurographics’00, pp 479–487

  19. Levin A (1999) Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Comput Aided Geom Des 16(5):345–354

    Article  Google Scholar 

  20. Lévy B (2003) Dual domain extrapolation. In: Proceedings of SIGGRAPH’03, pp 364–369

  21. Lukács G (1997) Differential geometry of G1 variable radius rolling ball blend surfaces. Comput Aided Geom Des 15(6):585–613

    Google Scholar 

  22. Maekawa T (1999) An overview of offset curves and surfaces. Comput Aided Des 31(2):165–173

    Article  Google Scholar 

  23. Möller T (1997) A fast triangle-triangle intersection test. J Graph Tools 2(2):25–30

    Google Scholar 

  24. Museth K, Breen DE, Whitaker RT, Barr AH (2002) Level set surface editing operators. In: Proceedings of SIGGRAPH’02, pp 330–338

  25. Nomura M, Hamada N (2001) Feature edge extraction from 3D triangular meshes using a thinning algorithm. In: Proceedings of SPIE conference on vision geometry X, SPIE 4476:34–41

  26. Ohtake Y, Belyaev A, Bogaevski I (2001) Mesh regularization and adaptive smoothing. Comput Aided Des 33(11):789–800

    Article  Google Scholar 

  27. O’Rourke J (1994) Computational geometry in C. Cambridge University Press, Cambridge, UK

  28. Park H, Kim K, Lee S-C (2000) A method for approximate NURBS curve compatibility based on multiple curve refitting. Comput Aided Des 32(4):237–252

    Article  Google Scholar 

  29. Piegl L, Tiller W (1997) The NURBS book. Springer, Berlin Heidelberg New York

  30. Rossignac JR, Requicha AAG (1984) Constant-radius blending in solid modeling. In: Proceedings of Computers in Mechanical Engineering, 3 July 1984, pp 65–73

  31. Schneider R, Kobbelt L (2001) Geometric fairing of irregular meshes for free-form surface design. Comput Aided Geom Des 18(4):359–379

    Article  Google Scholar 

  32. Shlafman S, Tal A, Katz S (2002) Metamorphosis of polyhedral surfaces using decomposition. Comput Graph Forum 21(3):219–228

    Article  Google Scholar 

  33. Taubin G (1995) A signal processing approach to fair surface design. In: Proceedings of SIGGRAPH’95, pp 351–358

  34. Várady T, Vida J, Martin RR (1989) Parametric blending in a boundary representation solid modeler. In: Handscomb, DC(eds) The mathematics of surfaces III. Oxford University Press, Oxford, UK, pp 171–197

  35. Vida J, Martin RR, Várady T (1994) A survey of blending methods that use parametric surfaces. Comput Aided Des 26(5):341–365

    Article  Google Scholar 

  36. Wu T, Zhou Y (2000) On blending of several quadratic algebraic surfaces. Comput Aided Geom Des 17(8):759–766

    Article  Google Scholar 

  37. Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum HY (2004) Mesh editing with poisson-based gradient field manipulation. In: Proceedings of SIGGRAPH’04, pp 644–651

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Shen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YS., Zhang, H., Yong, JH. et al. Mesh blending. Visual Comput 21, 915–927 (2005). https://doi.org/10.1007/s00371-005-0306-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0306-2

Keywords

Navigation