Log in

Unstructured mesh tools for magnetically confined fusion system simulations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

As fusion simulation codes increasingly account for the full geometric complexity of magnetically confined fusion systems, a need arose to provide tailored unstructured mesh technologies to address the specific needs of fusion plasma simulation codes and their coupling to other physics simulation codes. This paper presents a high level overview of a set of unstructured mesh developments that include; methods to effectively employ manufacturing CAD models in the construction of quality analysis model geometries, specialized mesh generation and adaptation tools; an infrastructure to support parallel particle-in-cell calculation on unstructured meshes; and an infrastructure for coupling of massively parallel mesh-based fusion codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Committee on the Key Goals and Innovation Needed for a U.S. Fusion Pilot Plant: Bringing Fusion to the U.S. Grid (2021). Technical report, The National Academies of Sciences, Engineering and Medicine (2021). https://doi.org/10.17226/25991

  2. Fusion Industry Association: The global fusion industry in 2023: Fusion companies survey by the Fusion Industry Association. https://www.fusionindustryassociation.org/wp-content/uploads/2023/07/FIA (accessed 25 November 2023)

  3. Ferraro NM, Jardin SC, Lao LL, Shephard MS, Zhang F (2016) Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities. Phys Plasmas 23:5. https://doi.org/10.1063/1.4948722

    Article  Google Scholar 

  4. Hansen C, Marklin G, Victor B, Akcay C, Jarboe T (2015) Simulation of injector dynamics during steady inductive helicity injection current drive in the HIT-SI experiment. Phys Plasmas 22:4

    Article  Google Scholar 

  5. Scotto d’Abusco M, Giorgiani G, Artaud JF, Bufferand H, Ciraolo G, Ghendrih P, Serre E, Tamain P (2022) Core-edge 2D fluid modeling of full tokamak discharge with varying magnetic equilibrium: from west start-up to ramp-down. Nucl Fusion 62(8):086002

    Article  Google Scholar 

  6. Giorgiani G, Bufferand H, Ciraolo G, Ghendrih P, Schwander F, Serre E, Tamain P (2018) A hybrid discontinuous Galerkin method for tokamak edge plasma simulations in global realistic geometry. J Comput Phys 374:515–532

    Article  MathSciNet  Google Scholar 

  7. Shiraiwa S, Wright JC, Bonoli PT, Kolev T, Stowell M, Hillairet J (2017) RF wave simulation for cold edge plasmas using the mfem library. EPJ Web Conf. https://doi.org/10.1051/epjconf/201715703048

    Article  Google Scholar 

  8. Siboni MH, Shephard MS (2022) Adaptive workflow for simulation of RF heaters. Comput Phys Commun 279:108434

    Article  MathSciNet  Google Scholar 

  9. Nath DD, Srinivasaragavan VV, Younkin TR, Diamond G, Smith CW, Hayes A, Shephard MS, Sahni O (2023) A 3D unstructured mesh based particle tracking code for impurity transport simulation in fusion tokamaks. Comput Phys Commun 292:108861

    Article  Google Scholar 

  10. DÁzevedo E, Abbott S, Koskela T, Worley P, Ku S-H, Ethier S, Yoon E, Shephard M, Hager R, Lang J, Choi J, Podhorszki N, Klasky S, Parashar M, Chang C-S (2017) The fusion code XGC: Enabling kinetic study of multi-scale edge turbulent transport in ITER. In: Straatsma, T.P., Antypas, K.B., Williams, T.J. (eds.) Exascale Scientific Applications: Scalability and Performance Portability, pp. 529–551. CRC Press, Taylor & Francis Group, 5 Howick Place, London

  11. Ku S, Chang CS, Hager R, Churchill RM, Tynan GR, Cziegler I, Greenwald M, Hughes J, Parker SE, Adams MF, D’Azevedo E, Worley P (2018) A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1. Phys Plasmas 25(5):056107. https://doi.org/10.1063/1.5020792

    Article  Google Scholar 

  12. Riaz U, Seol ES, Hager R, Shephard MS (2024) Modeling and meshing for tokamak edge plasma simulations. Comput Phys Commun 295:108982

    Article  Google Scholar 

  13. Beall MW, Walsh J, Shephard MS (2003) Accessing CAD geometry for mesh generation. In: Proceeding of the International Meshing Roundtable, pp. 33–42

  14. Weiler K (1985) Edge-based data structures for solid modeling in curved-surface environments. IEEE Comput Gr Appl 5(1):21–40

    Article  Google Scholar 

  15. G-EQDSK: G-formatted EQuilibrium DiSK file format used to store the data of an equilibrium. https://focus.readthedocs.io/en/latest/include/geqdsk.html

  16. Lao L, John HS, Stambaugh R, Kellman A, Pfeiffer W (1985) Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl Fus 25(11):1611

    Article  Google Scholar 

  17. Lao L, John HS, Peng Q, Ferron J, Strait E, Taylor T, Meyer W, Zhang C, You K (2005) MHD equilibrium reconstruction in the DIII-D tokamak. Fus Sci Technol 48(2):968–977

    Article  Google Scholar 

  18. Zhang C, Diamond G, Smith CW, Shephard MS (2023) Development of an unstructured mesh gyrokinetic particle-in-cell code for exascale fusion plasma simulations on GPUs. Comput Phys Commun 2:108824

    Article  Google Scholar 

  19. Riaz U (2024) An automated modeling, meshing and adaptive framework for tokamak plasma simulations. Rensselaer Polytechnic Institute. Ph.D. thesis

  20. Simmetrix: enabling simulation-based design. http://www.simmetrix.com/. Accessed 20 Dec 2023

  21. Kolev T, Fischer P, Min M, Dongarra J, Brown J, Dobrev V, Warburton T, Tomov S, Shephard MS, Abdelfattah A (2021) Efficient exascale discretizations: high-order finite element methods. Int J High Perform Comput Appl 35(6):527–552

    Article  Google Scholar 

  22. Landreman M, Medasani B, Wechsung F, Giuliani A, Jorge R, Zhu C (2021) SIMSOPT: a flexible framework for stellarator optimization. J Open Source Softw 6(65):3525

    Article  Google Scholar 

  23. Landreman M, Medasani B, Zhu C (2021) Stellarator optimization for good magnetic surfaces at the same time as quasisymmetry. Phys Plasmas 28:9

    Article  Google Scholar 

  24. Lazerson SA, Loizu J, Hirshman S, Hudson SR (2016) Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code. Phys Plasmas 23:1

    Google Scholar 

  25. Zhang F, Hager R, Ku S-H, Chang C-S, Jardin SC, Ferraro NM, Seol ES, Yoon E, Shephard MS (2016) Mesh generation for confined fusion plasma simulation. Eng Comput 32:285–293

    Article  Google Scholar 

  26. Lu Q, Shephard MS, Tendulkar S, Beall MW (2014) Parallel mesh adaptation for high-order finite element methods with curved element geometry. Eng Comput 30:271–286

    Article  Google Scholar 

  27. Wiesen S, Reiter D, Kotov V, Baelmans M, Dekeyser W, Kukushkin AS, Lisgo SW, Pitts RA, Rozhansky V, Saibene G, Veselova I, Voskoboynikov S (2015) The new SOLPS-ITER code package. J Nucl Mater 463:480–484. https://doi.org/10.1016/j.jnucmat.2014.10.012

    Article  Google Scholar 

  28. Stangeby PC, Elder JD, Fundamenski W (1999) A CFD onion-skin model for the interpretation of edge experiments. J Nucl Mater 266–269:1045–1050. https://doi.org/10.1016/S0022-3115(98)00852-6

    Article  Google Scholar 

  29. Li X, Shephard MS, Beall MW (2005) 3D anisotropic mesh adaptation by mesh modification. Comput Methods Appl Mech Eng 194(48–49):4915–4950

    Article  MathSciNet  Google Scholar 

  30. Dobrev V, Knupp P, Kolev T, Mittal K, Tomov V (2022) hr-Adaptivity for nonconforming high-order meshes with the target matrix optimization paradigm. Eng Comput

  31. Shi A, Persson P-O (2023) Local element operations for curved simplex meshes. Int J Numer Methods Eng 7379:2

    Google Scholar 

  32. Meredith L, Rezazadeh M, Huq M, Drobny J, Srinivasaragavan V, Sahni O, Curreli D (2023) hPIC2: a hardware-accelerated, hybrid particle-in-cell code for dynamic plasma-material interactions. Comput Phys Commun 283:108569

    Article  Google Scholar 

  33. Younkin TR, Green DL, Simpson AB, Wirth BD (2021) GITR: An accelerated global scale particle tracking code for wall material erosion and redistribution in fusion relevant plasma-material interactions. Comput Phys Commun 264:107885. https://doi.org/10.1016/j.cpc.2021.107885

    Article  MathSciNet  Google Scholar 

  34. Mniszewski SM, Belak J, Fattebert J-L, Negre CF, Slattery SR, Adedoyin AA, Bird RF, Chang C, Chen G, Ethier S (2021) Enabling particle applications for exascale computing platforms. Int J High Perform Comput Appl 35(6):572–597

    Article  Google Scholar 

  35. Suchyta E, Klasky S, Podhorszki N, Wolf M, Chang C, Choi J, Davis PE, Dominski J, Ethier S, Shephard MS (2022) The exascale framework for high fidelity coupled simulations (EFFIS): enabling whole device modeling in fusion science. Int J High Perform Comput Appl 36(1):106–128

    Article  Google Scholar 

  36. Vasileska I, Tomšié P, Kos L (2020) Modernization of the PIC codes for exascale plasma simulation. In: 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 209–213. IEEE

  37. Birdsall CK, Langdon AB (2018) Plasma physics via computer simulation. CRC Press, Boca Raton

    Book  Google Scholar 

  38. Diamond G, Smith CW, Zhang C, Yoon E, Shephard MS (2021) PUMIPic: a mesh-based approach to unstructured mesh particle-in-cell on GPUs. J Parallel Distrib Comput 157:1–12

    Article  Google Scholar 

  39. Ibanez DA (2023) Omega_h GitHub repository. https://github.com/sandialabs/omega_h

  40. Edwards HC, Trott CR, Sunderland D (2014) Kokkos: enabling manycore performance portability through polymorphic memory access patterns. J Parallel Distrib Comput 74(12):3202–3216. https://doi.org/10.1016/j.jpdc.2014.07.003

    Article  Google Scholar 

  41. Slattery S, Junghans C, L-G D, Chen G, ascheinb Bird R, Smith C (2019) ECP-copa/Cabana 0.1.0. https://doi.org/10.5281/zenodo.2558369

  42. Beall MW, Shephard MS (1997) A general topology-based mesh data structure. Int J Numer Methods Eng 40(9):1573–1596

    Article  MathSciNet  Google Scholar 

  43. Bungartz H-J, Lindner F, Mehl M, Uekermann B (2015) A plug-and-play coupling approach for parallel multi-field simulations. Comput Mech 55:1119–1129

    Article  MathSciNet  Google Scholar 

  44. Chourdakis G, Davis K, Rodenberg B, Schulte M, Simonis F, Uekermann B, Abrams G, Bungartz H-J, Cheung Yau L, Desai I, Eder K, Hertrich R, Lindner F, Rusch A, Sashko D, Schneider D, Totounferoush A, Volland D, Vollmer P, Koseomur OZ (2022) preCICE v2: a sustainable and user-friendly coupling library. Open Res Europe 2:51

    Article  Google Scholar 

  45. Gaston D, Newman C, Hansen G, Lebrun-Grandie D (2009) MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239(10):1768–1778

    Article  Google Scholar 

  46. Slattery SR, Wilson PPH, Pawlowski RP (2013) The data transfer kit: a geometric rendezvous-based tool for multiphysics data transfer. American Nuclear Society, Sun Valley, p 11

    Google Scholar 

  47. Keyes DE, McInnes LC, Woodward C, Gropp W, Myra E, Pernice M, Bell J, Brown J, Clo A, Connors J, Shephard MS (2013) Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl 27(1):4–83

    Article  Google Scholar 

  48. Merson J (2023) Parallel coupler for multimodel simulations GitHub repository. https://github.com/SCOREC/wdmappcoupling

  49. Godoy WF, Podhorszki N, Wang R, Atkins C, Eisenhauer G, Gu J, Davis P, Choi J, Germaschewski K, Huck K, Huebl A, Kim M, Kress J, Kurc T, Liu Q, Logan J, Mehta K, Ostrouchov G, Parashar M, Poeschel F, Pugmire D, Suchyta E, Takahashi K, Thompson N, Tsutsumi S, Wan L, Wolf M, Wu K, Klasky S (2020) ADIOS 2: The adaptable input output system a framework for high-performance data management 12:5 https://doi.org/10.1016/j.softx.2020.100561

  50. Plimpton SJ, Knight C. Rendezvous algorithms for large-scale modeling and simulation 147, 184–195 https://doi.org/10.1016/j.jpdc.2020.09.001

  51. Ibanez DA (2016) Conformal mesh adaptation on heterogeneous supercomputers. Rensselaer Polytechnic Institute. Ph.D. thesis

  52. Ibanez DA, Seol ES, Smith CW, Shephard MS (2016) PUMI: parallel unstructured mesh infrastructure. ACM Trans Math Softw (TOMS) 42(3):1–28

    Article  MathSciNet  Google Scholar 

  53. Merson J, Shephard MS. Model-Traits: Model attribute definitions for scientific simulations in C++. 6(64), 3389. https://doi.org/10.21105/joss.03389

  54. Slattery SR (2016) Mesh-free data transfer algorithms for partitioned multiphysics problems: conservation, accuracy, and parallelism. J Comput Phys 307:164–188

    Article  MathSciNet  Google Scholar 

  55. Blanchard G, LoubËre R (2016) High order accurate conservative remap** scheme on polygonal meshes using a posteriori MOOD limiting. Comput Fluids 136:83–103

    Article  MathSciNet  Google Scholar 

  56. Farrell PE, Maddison JR (2011) Conservative interpolation between volume meshes by local Galerkin projection. Comput Methods Appl Mech Eng 200(1–4):89–100

    Article  MathSciNet  Google Scholar 

  57. Jiao X, Heath MT (2004) Common-refinement-based data transfer between non-matching meshes in multiphysics simulations. Int J Numer Methods Eng 61(14):2402–2427

    Article  MathSciNet  Google Scholar 

  58. Mollén A, Adams MF, Knepley MG, Hager R, Chang CS (2021) Implementation of higher-order velocity map** between marker particles and grid in the particle-in-cell code XGC. J Plasma Phys 87(2):905870229

    Article  Google Scholar 

  59. Smith CW, Granzow B, Diamond G, Ibanez D, Sahni O, Jansen KE, Shephard MS (2018) In-memory integration of existing software components for parallel adaptive unstructured mesh workflows. Concurr Comput Pract Exp 30:4510

    Article  Google Scholar 

  60. Davis P, Merson J, Subedi P, Ricketson L, Smith C, Shephard MS, Parashar M (2023) Benesh: choreographic coordination for in-situ workflows. In: 30th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE

  61. Beidler C, Bird T, Drevlak M, Feng Y, Hatzky R, Jenko F, Kleiber R, Proll J, Turkin Y (2012) Stellarator and tokamak plasmas: a comparison. Plasma Phys Control Fus 54(12):124009

    Article  Google Scholar 

Download references

Acknowledgements

The developments reported in this paper were supported by the U.S. Department of Energy Office of Science Scientific Discovery through Advanced Computation Program under awards DE-SC0021285 (FASTMath SciDAC Institute) and DE-SC0018275 (Unstructured Mesh Technologies for Fusion Simulation Codes). It was also supported by the Department of Energy Office of Science and the National Nuclear Security Administration Exascale Computing Program, under contract DE-AC02-06CH11357 (Center for Efficient Exascale Discretizations and Whole Device Model Application). Any opinions, findings and conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Shephard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shephard, M.S., Merson, J., Sahni, O. et al. Unstructured mesh tools for magnetically confined fusion system simulations. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-01976-2

Keywords

Navigation