Log in

A finite-difference procedure to solve weakly singular integro partial differential equation with space-time fractional derivatives

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The main aim of the current paper is to propose an efficient numerical technique for solving space-time fractional partial weakly singular integro-differential equation. The temporal variable is based on the Riemann–Liouville fractional derivative and the spatial direction is based on the Riesz fractional derivative. Thus, to achieve a numerical technique, the time variable is discretized using a finite difference scheme with convergence order \({{\mathcal {O}}}(\tau ^{\frac{3}{2}})\). Also, the space variable is discretized using a finite difference scheme with second-order accuracy. Furthermore, for the time-discrete and the full-discrete schemes error estimate has been presented to show the unconditional stability and convergence of the developed numerical method. Finally, two test problems have been illustrated to verify the efficiency, applicability and simplicity of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbaszadeh M (2019) Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl Math Lett 88(9):179–185

    MathSciNet  MATH  Google Scholar 

  2. Abbaszadeh M, Dehghan M (2019) Meshless upwind local radial basis function-finite difference technique to simulate the time- fractional distributed-order advection-diffusion equation. In press, Engineering with Computers

  3. Abbaszadeh M, Dehghan M, Zhou Y (2019) Alternating direction implicit-spectral element method (ADI-SEM) for solving multi-dimensional generalized modified anomalous sub-diffusion equation. Comput Math Appl 78:1772–1792

    MathSciNet  MATH  Google Scholar 

  4. Alikhanov AA (2015) A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280:424–438

    MathSciNet  MATH  Google Scholar 

  5. Alikhanov AA (2015) Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput. 268:12–22

    MathSciNet  MATH  Google Scholar 

  6. Antoine X, Tang Q, Zhang Y (2016) On the ground states and dynamics of space fractional nonlinear Schrodinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions. J. Comput. Phys. 325:74–97

    MathSciNet  MATH  Google Scholar 

  7. Bhrawy AH, Zaky MA (2017) An improved collocation method for multi-dimensional space-time variable-order fractional Schrodinger equations. Appl. Numer. Math. 111:197–218

    MathSciNet  MATH  Google Scholar 

  8. Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281:876–895

    MathSciNet  MATH  Google Scholar 

  9. Bu W, Tang Y, Wu Y, Yang J (2015) Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations. J. Comput. Phys. 293:264–279

    MathSciNet  MATH  Google Scholar 

  10. Bu W, Tang Y, Yang J (2014) Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276:26–38

    MathSciNet  MATH  Google Scholar 

  11. Bu W, Tang Y, Wu Y, Yang J (2015) Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model. Appl. Math. Comput. 257:355–364

    MathSciNet  MATH  Google Scholar 

  12. Çelik C, Duman M (2012) Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J Comput Phys 231(4):1743–1750

    MathSciNet  MATH  Google Scholar 

  13. Christensen RM (1971) Theory of viscoelasticity. Academic Press, New York

    Google Scholar 

  14. Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71:16–30

    MathSciNet  MATH  Google Scholar 

  15. Dehghan M (2006) Solution of a partial integro-differential equation arising from viscoelasticity. Int J Comput Math 83(1):123–129

    MathSciNet  MATH  Google Scholar 

  16. Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33:587–605

    Google Scholar 

  17. Dehghan M, Abbaszadeh M, Mohebbi A (2016) Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: meshless interpolating element free Galerkin (IEFG) and finite element methods. Eng Anal Bound Elements 64:205–221

    MathSciNet  MATH  Google Scholar 

  18. Dehghan M, Abbaszadeh M (2018) A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput Math Appl 75(8):2903–2914

    MathSciNet  MATH  Google Scholar 

  19. Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Diff Eqs. 26(2):448–479

    MathSciNet  MATH  Google Scholar 

  20. Deng W (2008) Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1):204–226

    MathSciNet  MATH  Google Scholar 

  21. Diethelm K, Walz G (1997) Numerical solution of fractional order differential equations by extrapolation. Numerical Algorithms 16:231–253

    MathSciNet  MATH  Google Scholar 

  22. Doha EH, Hafez RM, Youssri YH (2019) Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations. Comput Math Appl 78:889–904

    MathSciNet  MATH  Google Scholar 

  23. Ervin VJ, Roop JP (2006) Variational formulation for the stationary fractional advection dispersion equation. Numer Methods Partial Differ. Equ. 22:558–576

    MathSciNet  MATH  Google Scholar 

  24. Eslahchi MR, Dehghan M, Parvizi M (2014) Application of the collocation method for solving nonlinear fractional integro-differential equations. J Comput Appl Math 257:105–128

    MathSciNet  MATH  Google Scholar 

  25. Gurtin ME, Pipkin AC (1968) A general theory of heat conduction with nite wave speed. Arch Ration Mech Anal 31:113–126

    MATH  Google Scholar 

  26. Hafez RM, Zaky MA (2019) High-order continuous Galerkin methods for multi-dimensional advection-reaction-difusion problems. Eng Comput 1:1. https://doi.org/10.1007/s00366-019-00797-y

    Article  Google Scholar 

  27. Hafez RM (2018) Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method. Comput Appl Math 37:5253–5273

    MathSciNet  MATH  Google Scholar 

  28. Hassani H, Avazzadeh Z, Machado JAT (2019) Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng Comput. https://doi.org/10.1007/s00366-019-00736-x

  29. Fan W, Liu F, Jiang X, Turner I (2017) A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain. Fract Calc Appl Anal 20(2):352–383

    MathSciNet  MATH  Google Scholar 

  30. Feng LB, Zhuang P, Liu F, Turner I, Anh V, Li J (2017) A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients. Comput. Math. Appl. 73:1155–1171

    MathSciNet  MATH  Google Scholar 

  31. Feng LB, Zhuang P, Liu F, Turner I, Gu YT (2016) Finite element method for space-time fractional diffusion equation. Numer Algorithms 72:749–767

    MathSciNet  MATH  Google Scholar 

  32. Jia J, Wang H (2016) A fast finite volume method for conservative space-fractional diffusion equations in convex domains. J Comput Phys 310:63–84

    MathSciNet  MATH  Google Scholar 

  33. ** B, Lazarov R, Pasciak J, Zhou Z (2013) Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J Numer Anal 52(5):2272–2294

    MathSciNet  MATH  Google Scholar 

  34. Luo M, Xu D, Li L (2015) A compact difference scheme for a partial integro-differential equation with a weakly singular kernel. Appl Math Model 39:947–954

    MathSciNet  MATH  Google Scholar 

  35. Hao ZP, Sun ZZ, Cao WR (2015) A fourth-order approximation of fractional derivatives with its applications. J Comput Phys 281:787–805

    MathSciNet  MATH  Google Scholar 

  36. Macias-Diaz JE (2017) Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations. Commun Nonlinear Sci Numer Simul 46:89–102

    MathSciNet  MATH  Google Scholar 

  37. Miller RK (1978) An integro-differential equation for grid heat conductors with memory. J Math Anal Appl 66:313–332

    MathSciNet  MATH  Google Scholar 

  38. Mohammadi M, Schaback R (2016) On the fractional derivatives of radial basis functions, ar**v preprint ar**v:1612.07563

  39. Mohebbi A (2017) Compact finite difference scheme for the solution of a time fractional partial integro-differential equation with a weakly singular kernel. Math Methods Appl Sci 40(18):7627–7639

    MathSciNet  MATH  Google Scholar 

  40. Rcnardy M (1989) Mathematical analysis of viscoelastic flows. Ann Rev Fluid Mech. 21:21–36

    MathSciNet  Google Scholar 

  41. Roop J P (2004) Variational solution of the fractional advection dispersion equation, PhD thesis, Clemson University,

  42. Pang HK, Sun HW (2016) Fourth-order finite difference schemes for time-space fractional sub-diffusion equations. Comput Math Appl 71:1287–1302

    MathSciNet  MATH  Google Scholar 

  43. Pindza E, Owolabi KM (2016) Fourier spectral method for higher order space fractional reaction-diffusion equations. Commun Nonlinear Sci Numer Simul 40:112–128

    MathSciNet  MATH  Google Scholar 

  44. Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59:1326–1336

    MathSciNet  MATH  Google Scholar 

  45. Saadatmandi A, Dehghan M (2011) A Legendre collocation method for fractional integro-differential equations. J Vib Control 17(13):2050–2058

    MathSciNet  MATH  Google Scholar 

  46. Sun H, Sun ZZ, Gao GH (2016) Some high order difference schemes for the space and time fractional Bloch-Torrey equations. Appl Math Comput 281:356–380

    MathSciNet  MATH  Google Scholar 

  47. Tang T (1993) A finite difference scheme for a partial integro-differential equations with a weakly singular kernel. Appl Numer Math 11:309–319

    MathSciNet  MATH  Google Scholar 

  48. Tian W, Zhou H, Deng W (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84(294):1703–1727

    MathSciNet  MATH  Google Scholar 

  49. Vong S, Wang Z (2014) A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions. J Comput Phys 274:268–282

    MathSciNet  MATH  Google Scholar 

  50. Wang Z, Vong S (2014) Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J Comput Phys 277:1–15

    MathSciNet  MATH  Google Scholar 

  51. Wang J, Liu T, Li H, Liu Y, He S (2017) Second-order approximation scheme combined with \(H^1\)-Galerkin MFE method for nonlinear time fractional convection-diffusion equation. Comput Math Appl 73:1182–1196

    MathSciNet  MATH  Google Scholar 

  52. Weng Z, Zhai S, Feng X (2017) A Fourier spectral method for fractional-in-space Cahn-Hilliard equation. Appl Math Model 42:462–477

    MathSciNet  MATH  Google Scholar 

  53. Yang Z, Yuan Z, Nie Y, Wang J, Zhu X, Liu F (2017) Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains. J Comput Phys 330:863–883

    MathSciNet  MATH  Google Scholar 

  54. Yang W, Wang D, Yang L (2016) A stable numerical method for space fractional Landau-Lifshitz equations. Appl Math Lett 61:149–155

    MathSciNet  MATH  Google Scholar 

  55. Yu Y, Deng W, Wu Y, Wu J (2017) Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations. Appl Numer Math 112:126–145

    MathSciNet  MATH  Google Scholar 

  56. Yuan ZB, Nie YF, Liu F, Turner I, Zhang GY, Gu YT (2016) An advanced numerical modeling for Riesz space fractional advection-dispersion equations by a meshfree approach. Appl Math Model 40:7816–7829

    MathSciNet  MATH  Google Scholar 

  57. Youssri YH, Hafez RM (2019) Exponential Jacobi spectral method for hyperbolic partial differential equations. Math Sci 13(4):347–354

    MathSciNet  MATH  Google Scholar 

  58. Zayernouri M, Karniadakis GE (2014) Exponentially accurate spectral and spectral element methods for fractional ODEs. J Comput Phys 257:460–480

    MathSciNet  MATH  Google Scholar 

  59. Zayernouri M, Karniadakis GE (2014) Discontinuous spectral element methods for time-and space-fractional advection equations. SIAM J Sci Comput 36:B684–B707

    MathSciNet  MATH  Google Scholar 

  60. Zhao X, Sun ZZ, Hao ZP (2014) A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation. SIAM J Sci Comput 36:A2865–A2886

    MathSciNet  MATH  Google Scholar 

  61. Zhao Y, Bu W, Huang J, Liu DY, Tang Y (2015) Finite element method for two-dimensional space-fractional advection-dispersion equations. Appl Math Comput 257:553–565

    MathSciNet  MATH  Google Scholar 

  62. Zhao Z, Li CP (2012) Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl Math Comput 219:2975–2988

    MathSciNet  MATH  Google Scholar 

  63. Zhuang P, Liu F, Turner I, Gu YT (2014) Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation. Appl Math Model 38:3860–3870

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Abbaszadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, M., Dehghan, M. A finite-difference procedure to solve weakly singular integro partial differential equation with space-time fractional derivatives. Engineering with Computers 37, 2173–2182 (2021). https://doi.org/10.1007/s00366-020-00936-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-00936-w

Keywords

AMS subject Classification

Navigation