Log in

Research on the Differences in Phenotypic and Photosynthetic Biophysical Parameters of Begonias (Begonia rex) Cultivars Under Various Light Spectral Compositions

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The quality and intensity of light greatly affect the photosynthetic efficiency of plants. In this research, the impact of different light spectral composition on photosynthetic efficiency of three cultivars of Begonia rex (‘Red’, ‘Silver’, and ‘Black Velvet’) was investigated using the OJIP test. Experiment performed with pot-grown plants in a commercial greenhouse consisted of six growth chambers equipped with normal light (control), 100% blue (B), 15%B + 85% red (R), 30%B + 70%R, 15%B + 65%R + 20% white (W), and 30%B + 50%R + 20%W light, based on a completely randomized design with three replications. Photosynthetic biophysical parameters were measured 16 weeks after growth at different light spectra under a 15/9 h light/dark photoperiod and 250 μmol m−2 s−1 PPFD. The highest amounts of quantum yield and Fv/Fo were found in ‘Black Velvet’ plants under 15%B85%R lighting and control conditions. The values of specific energy fluxes per active reaction center (RC) for energy absorption (ABS/RC) and trapped energy flux (TRo/RC) were significantly increased in ‘Black Velvet’ in response to 30%B70%R and 15%B65%R20%W light action. Dissipated energy flux per unit reaction center (DIo/RC) was significantly increased in ‘Black Velvet’ in the treatment with 30%B70%R light. The maximum amount of photosynthetic performance index (PIABS) was recorded under the combination of 30%B50%R20%W spectrum in ‘Black Velvet’. Meanwhile, the lowest amounts of TRo/RC, ABS/RC, DIo/RC, and ETo/RC (unit reaction centers for electron transfer) were detected upon 30%B50%R20%W lighting in ‘Black Velvet’. Therefore, the spectrum combination of 30%B70%R and 15%B65%R20%W, were the most effective treatments for increasing photosynthetic efficiency, whereas blue light and control appeared as low effective source of illumination. Furthermore, light spectra other than RB combination imposed several limits on the growth of begonia plants and the efficiency of electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

LEDs:

Light-emitting diodes

RC:

Reaction center

B:

Blue

R:

Red

W:

White

QA:

Quinone acceptor

PI:

Photosynthetic performance index

PPFD:

Photosynthetic photon flux density

NPQ:

Non-photochemical quenching

QY:

Quantum yield of CO2 assimilation

References

  • Aalifar M, Aliniaeifard S, Arab M, Mehrjerdi MZ, Serek M (2020) Blue light postpones senescence of carnation flowers through regulation of ethylene and abscisic acid pathway-related genes. Plant Physiol Biochem 151:103–112

    CAS  PubMed  Google Scholar 

  • Aliniaeifard S, Malcolm Matamoros P, van Meeteren U (2014) Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling. Physiol Plant 152:688–699

    CAS  PubMed  Google Scholar 

  • Aliniaeifard S, Seif M, Arab M, Zare Mehrjerdi M, Li T, Lastochkina O (2018) Growth and photosynthetic performance of Calendula officinalis under monochromatic red light. Int J Hortic Sci Technol 5:123–132

    CAS  Google Scholar 

  • Bantis F, Smirnakou S, Ouzounis T, Koukounaras A, Ntagkas N, Radoglou K (2018) Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci Hortic 235:437–451

    CAS  Google Scholar 

  • Berry JO, Yerramsetty P, Zielinski AM, Mure CM (2013) Photosynthetic gene expression in higher plants. Photosynth Res 117:91–120

    CAS  PubMed  Google Scholar 

  • Branco MCDS, de Almeida A-AF, Dalmolin A, Ahnert D, Baligar VC (2017) Influence of low light intensity and soil flooding on cacao physiology. Sci Hortic 217:243–257

    Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Ann Rev Genet 38:87–117

    CAS  PubMed  Google Scholar 

  • EunKyoung E, WanSoon K (2014) Effects of light quality on growth characteristics and red variegated expression in leaves of Begonia rex ‘Harmony’s Red Robin’ for indoor vertical gardening system. J Korean Soc People Plants Environ 17(5):365–371

    Google Scholar 

  • Ferroni L, Živčak M, Kovar M, Colpo A et al (2022) Fast chlorophyll a fluorescence induction (OJIP) phenoty** of chlorophyll-deficient wheat suggests that an enlarged acceptor pool size of Photosystem I helps compensate for a deregulated photosynthetic electron flow. J Photochem Photobiol, B 234:112549

    CAS  PubMed  Google Scholar 

  • Fukuda N, Fujita M, Ohta Y, Sase S, Nishimura S, Ezura H (2008) Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci Hort 115:176–182

    Google Scholar 

  • Gao S, Liu X, Liu Y, Cao B, Chen Z, Xu K (2021) Response of growth, photosynthetic electron transfer, and chloroplast ultrastructure to different LED light combination in green onion (Allium fistulosum L.). Physiol Plantarum 172(3):1662–1672

    CAS  Google Scholar 

  • Gao S, Wang K, Li N, Lv Y, Cao B, Chen Z, Xu K (2022) The growth and photosynthetic responses of white LEDs with supplemental blue light in green onion (Allium fistulosum L.) unveiled by Illumina and single-molecule real-time (SMRT) RNA-sequencing. Environ Exp Bot 197:104835. https://doi.org/10.1016/j.envexpbot.2022.104835

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj 990:87–92

    CAS  Google Scholar 

  • Gollan PJ, Eva-Mari A (2020) Photosynthetic signalling during high light stress and recovery: targets and dynamics. Philos Trans R Soc Lond B Biol Sci 375(1801):20190406. https://doi.org/10.1098/rstb.2019.0406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goltsev VN, Kalaji HM, Paunov M, Bąba W, Horaczek T, Mojski J, Kociel H, Allakhverdiev SI (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol. https://doi.org/10.1134/S1021443716050058

    Article  Google Scholar 

  • Gupta S, Seth CS (2021) Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. Physiol Mol Biol Plants 27(11):2651–2664. https://doi.org/10.1007/s12298-021-01088-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo J, Lee C, Chakrabarty D, Paek K (2002) Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regul 38:225–230

    CAS  Google Scholar 

  • Heydarnajad GR, Torabi GM, Estaji A, Bovand F, Ghorbanpour M (2023) Light-emitting diode irradiation and glycine differentially affect photosynthetic performance of black henbane (Hyoscyamus niger L.). S Afr J Bot 155:230–240

    Google Scholar 

  • Hosseini A, Zare Mehrjerdi M, Aliniaeifard S, Seif M (2019) Photosynthetic and growth responses of green and purple basil plants under different spectral compositions. Physiol Mol Biol Plants 25(3):741–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huche-Thelier L, Crespel L, Le Gourrierec J, Morel P, Sakr S, Leduc N (2015) Light signaling and plant responses to blue and UV radiations-perspectives for applications in horticulture. Environ Exp Bot 121:22–38

    Google Scholar 

  • Jain SM, Ochatt SJ (2010) Protocols for in vitro propagation of ornamental plants. Springer, New York

    Google Scholar 

  • Jansen MA, Mattoo AK, Edelman M (1999) D1–D2 protein degradation in the chloroplast: complex light saturation kinetics. Eur J Biochem 260:527–532

    CAS  PubMed  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8(3):217–230

    CAS  PubMed  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SIM, Brestic F, Bussotti A, Calatayud P, Dąbrowski NI, Elsheery L, Ferroni L, Guidi SW, Hogewoning A, Jajoo AN, Misra SG, Nebauer S, Pancaldi C, Penella D, Poli M, Pollastrini ZB, Romanowska-Duda B, Rutkowska J, Serˆodio K, Suresh W, Szulc E, Tambussi M, Yanniccari MZ (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158. https://doi.org/10.1007/s11120-014-0024-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klem K, Gargallo-Garriga A, Rattanapichai W, Oravec M, Holub P, Veselá B, Sardans J, Peñuelas J, Urban O (2019) Distinct morphological, physiological, and biochemical responses to light quality in barley leaves and roots. Front Plant Sci 10:1026. https://doi.org/10.3389/fpls.2019.01026

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Singh H, Raj S, Soni V (2020) Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochem Biophys Rep 24:100813

    PubMed  PubMed Central  Google Scholar 

  • Kumar D, Seth CS (2022) Photosynthesis, lipid peroxidation, and antioxidative responses of Helianthus annuus L. against chromium(VI) accumulation. Int J Phytoremed 24(6):590–599. https://doi.org/10.1080/15226514.2021.1958747

    Article  CAS  Google Scholar 

  • Küpper H, Benedikty Z, Morina F, Andresen E, Mishra A, Trtilek M (2019) Analysis of OJIP chlorophyll fluorescence kinetics and QA reoxidation kinetics by direct fast imaging. Plant Physiol 179:369–381. https://doi.org/10.1104/pp.18.00953

    Article  CAS  PubMed  Google Scholar 

  • Kusuma P, Pattison PM, Bugbee B (2020) From physics to fixtures to food: current and potential LED efficacy. Horticult Res 7:56

    CAS  Google Scholar 

  • Leonel, L.V., de Oliveira Reis, F., de Assis Figueiredo, F.A.M.M. et al. Light intensity and hydrogel soil amendment differentially affect growth and photosynthesis of successional tree species. J. For. Res. 34, 257–268 (2023). https://doi.org/10.1007/s11676-022-01552-8

  • Li Y, Liu Z, Shi Q, Yang F, Wei M (2021) Mixed red and blue light promotes tomato seedlings growth by influencing leaf anatomy, photosynthesis, CO2 assimilation and endogenous hormones. Sci Hortic 290:110500

    CAS  Google Scholar 

  • Lim SR, Kang D, Ogunseitan OA, Schoenung JM (2010) Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification. Environ Sci Technol 45:320–327

    PubMed  Google Scholar 

  • Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM (2013) The effects of red blue and white light-emitting diodes on the growth development and edible quality of hydroponically grown lettuce (Lactuca sativa L Var Capitata). Sci Hort 150:86–91.

  • Liu J, van Iersel MW (2021) Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms. Front Plant Sci 12:619987. https://doi.org/10.3389/fpls.2021.619987

    Article  PubMed  PubMed Central  Google Scholar 

  • Long A, Zhang J, Yang LT, Ye X, Lai NW, Tan LL, Lin D, Chen LS (2017) Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus. Front Plant Sci 8:185

    PubMed  PubMed Central  Google Scholar 

  • Lu C, Vonshak A (1999) Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355

    Google Scholar 

  • Martins JPR, Schimildt ER, Alexandre RS, Falqueto AR, Otoni WC (2015) Chlorophyll a fluorescence and growth of Neoregelia concentrica (Bromeliaceae) during acclimatization in response to light levels. Vitro Cell Dev Biol Plant 51:471–481. https://doi.org/10.1007/s11627-015-9711-z

  • Grieco M, Suorsa M, Jajoo A, Tikkanen M, Aro EM (2015) Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery - including both photosystems II and I. Biochim Biophys Acta Bioenerg. https://doi.org/10.1016/j.bbabio.2015.03.004

    Article  Google Scholar 

  • Martinazzo EG, Ramm A, Bacarin MA (2012) The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. Braz J Plant Physiol 24:237–246

    CAS  Google Scholar 

  • Mathur S, Mehta P, Jajoo A (2013) Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). Physiol Mol Biol Plants 19:179–188

    CAS  PubMed  Google Scholar 

  • Mohammadi H, Khoshi N, Hazrati S, Aghaee A, Falakian M, Ghorbanpour M (2023) Interaction of NaCl salinity and light intensity affect growth, physiological traits and essential oil constituents in Artemisia dracunculus L. (tarragon). Biochem Syst Ecol 107:104626. https://doi.org/10.1016/j.bse.2023.104626

    Article  CAS  Google Scholar 

  • Nhut DT, Hai NT, Huyen PX, Huong DTQ, Hang NTT, Da Silva JAT (2005) Thidiazuron induces high frequency shoot bud formation from Begonia petiole transverse thin cell layer culture. Propag Ornam Plants 5:149–155

    Google Scholar 

  • Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto K, Yanagi T, Takita S, Tanaka M, Higuchi T, Ushida Y, Watanabe H (1996) Development of plant growth apparatus using blue and red LED as artificial light source. Acta Hort 440:111–116

    CAS  Google Scholar 

  • Ouzounis T, Frett´e, X., Rosenqvist, E., Ottosen, C.O. (2014) Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. J Plant Physiol 171(16):1491–1499

    CAS  PubMed  Google Scholar 

  • Paradiso R, Proietti S (2022) Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of modern LED S. J Plant Growth Regul 2022(41):742–780. https://doi.org/10.1007/s00344-021-10337-y

    Article  CAS  Google Scholar 

  • Parvanova D, Popova A, Zaharieva I, Lambrev P, Konstantinova T, Taneva S, Atanassov A, Goltsev V, Djilianov D (2004) Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or glycine betaine. Variable chlorophyll fluorescence evidence. Photosynthetica 42:179–185

    CAS  Google Scholar 

  • Pettai H, Oja V, Freiberg A, Laisk A (2005) The long-wavelength limit of plant photosynthesis. Fed Eur Biochem Soc 579:4017–4019

    CAS  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CD (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta (bioenerg) 1817:167–181

    CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll A fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362. https://doi.org/10.1007/978-1-4020-3218-9_12.

  • Singh D et al (2017) Interactive effects of EDTA and oxalic acid on chromium uptake, translocation and photosynthetic attributes in Indian mustard (Brassica juncea L. var. Varuna). Curr Sci 1:2034–2042. https://doi.org/10.18520/cs/v112/i10/2034-2042

    Article  CAS  Google Scholar 

  • Su J, Liu B, Liao J, Yang Z, Lin C, Oka Y (2017) Coordination of cryptochrome and phytochrome signals in the regulation of plant light responses. Agronomy 7:25

    Google Scholar 

  • Rabara RC, Behrman G, Timbol T, Rushton PJ (2017) Effect of spectral quality of monochromatic LED lights on the growth of artichoke seedlings. Front Plant Sci 8:190

    PubMed  PubMed Central  Google Scholar 

  • Rokka A, Aro EM, Herrmann RG, Andersson B, Vener AV (2000) Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. Plant Physiol 123(4):1525–1536. https://doi.org/10.1104/pp.123.4.1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salachna P (2022) Trends in ornamental plant production. Horticulturae 8:413. https://doi.org/10.3390/horticulturae8050413

    Article  Google Scholar 

  • Sanchez F, Bassil E, Crane JH, Shahid MA, Vincent CI, Schaffer B (2022) Spectral light distribution affects photosynthesis, leaf reflective indices, antioxidant activity and growth of Vanilla planifolia. Plant Physiol Biochem 182:145–153

    CAS  PubMed  Google Scholar 

  • Sarkar R, Ray A (2016) Submergence-tolerant rice withstands complete submergence even in saline water: probing through chlorophyll A fluorescence induction OJIP transients. Photosynthetica 54:275–287

    CAS  Google Scholar 

  • Seif M, Aliniaeifard S, Arab M, Zare Mehrjerdi M (2018) Effect of light qualities on photosynthetic electron transport chain in chrysanthemum leaves. In: XXX international horticultural congress IHC2018: III international symposium on innovation and new technologies in protected, vol 1271, pp 169–176.

  • Seth CS (2015) A review on effects of climate change on plants and ecosystems and certain approaches for plant response studies under climate change scenario with specific focus on FACE. J Food Nutr Disord 4:1. https://doi.org/10.4172/2324-9323.1000165

    Article  Google Scholar 

  • Seth CS et al (2014) Changes in C-N metabolism under elevated CO2 and temperature in Indian mustard (Brassica juncea L.): an adaptation strategy under climate change scenario. J Plant Res 127:793–802

    CAS  PubMed  Google Scholar 

  • Shafiq I, Hussain S, Raza MA, Iqbal N et al (2021) Crop photosynthetic response to light quality and light intensity. J Integr Agric 20(1):4–23. https://doi.org/10.1016/S2095-3119(20)63227-0

    Article  CAS  Google Scholar 

  • Singh D, Basu C, Meinhardt-Wollweber M, Roth B (2015) LEDs for energy efficient greenhouse lighting. Renew Sust Energy Rev 49:139–147

    CAS  Google Scholar 

  • Souza RP, Machado EC, Silva JAB, Lagoˆa AMMA, Silveira JAG (2004) Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51:45Ð56

  • Stirbet A, Govindjee, (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee, (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

    CAS  PubMed  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing photosynthesis: mechanisms, regulation and adaptation. Martinus Nijhoff Publisher, Dordrecht, pp 445–483

    Google Scholar 

  • Stefanov MA, Rashkov GD, Apostolova EL (2022) Assessment of the photosynthetic apparatus functions by chlorophyll fluorescence and P700 absorbance in C3 and C4 plants under physiological conditions and under salt stress. Int J Mol Sci 23:3768. https://doi.org/10.3390/ijms23073768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solbach JA, Fricke A, Stützel H (2021) Seasonal efficiency of supplemental LED lighting on growth and photomorphogenesis of sweet basil. Front Plant Sci 12:609975. https://doi.org/10.3389/fpls.2021.609975

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarakanov IG, Tovstyko DA, Lomakin MP, Shmakov AS, Sleptsov NN, Shmarev AN, Litvinskiy VA, Ivlev AA (2022) Effects of light spectral quality on photosynthetic activity, biomass production, and carbon isotope fractionation in lettuce, Lactuca sativa L., plants. Plants 11:441. https://doi.org/10.3390/plants11030441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM (2022) Genetics as a key to improving crop photosynthesis. J Exp Bot 73(10):3122–3137. https://doi.org/10.1093/jxb/erac076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trebst A (2007) Inhibitors in the functional dissection of the photosynthetic electron transport system. Photosynth Res 92:217–224. https://doi.org/10.1007/s11120-007-9213-x

    Article  CAS  PubMed  Google Scholar 

  • Tibbitts T, Morgan D, Warrington I (1983) Growth of lettuce, spinach, mustard, and wheat plants under four combinations of high-pressure sodium, metal halide, and tungsten halogen lamps at equal PPFD. J Am Soc Hortic Sci 108:622–630

    Google Scholar 

  • Tyagi AK, Gaur T (2003) Light regulation of nuclear photosynthetic genes in higher plants. Crit Rev Plant Sci 22:417–452

    CAS  Google Scholar 

  • Urbonavičiūtė A, Pinho P, Samuolienė G, Duchovskis P, Vitta P, Stonkus A, Tamulaitis G, Žukauskas A, Halonen L (2007) Effect of short-wavelength light on lettuce growth and nutritional quality. Sodininkystė Ir Daržininkystė 26:157–165

    Google Scholar 

  • Vico G, Way DA, Hurry V, Manzoni S (2019) Can leaf net photosynthesis acclimate to rising and more variable temperatures? Plant Cell Environ 42:1913–1928

    CAS  PubMed  Google Scholar 

  • Wang ZX, Chen L, Ai J, Qin HY, Liu YX, Xu PL et al (2012) Photosynthesis and activity of photosystem II in response to drought stress in Amur grape (Vitis amurensis Rupr.). Photosynthetica 50(2):189–196

    CAS  Google Scholar 

  • Wu H (2016) Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). BioMed Res Int. https://doi.org/10.1155/2016/7383918

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang F, Huang S, Gao R, Liu W, Yong T, Wang X, Wu X, Yang W (2014) Growth of soybean seedlings in relay strip intercrop** systems in relation to light quantity and red: far-red ratio. Field Crop Res 155:245–253

    Google Scholar 

  • Yoshida H, Mizuta D, Fukuda N, Hikosaka S, Goto E (2016) Effects of varying light quality from single-peak blue and red light-emitting diodes during nursery period on flowering, photosynthesis, growth, and fruit yield of everbearing strawberry. Plant Biotechnol 33:267–276

    CAS  Google Scholar 

  • Zheng Y, Mai B, Wu R, Feng Y, Sofo A, Ni Y, Sun J, Li J, Xu J (2011) Acclimation of winter wheat (Triticum aestivum, Cv. Yangmai 13) to low levels of solar irradiance. Photosynthetica 49:3

    Google Scholar 

  • Zheng L, Van Labeke MC (2017a) Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality. J Plant Physiol 213:66–74. https://doi.org/10.1016/j.jplph.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Van Labeke MC (2017b) Long-term effects of red-and blue light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Front Plant Sci 8:917. https://doi.org/10.3389/fpls.2017.00917

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DK performed the experiment and contributed to data collection. MD-A designed and supervised the research and wrote the manuscript, MH advised the research, and MG analyzed the data and revised the manuscript. All authors read and approved the final version of manuscript.

Corresponding author

Correspondence to Mehrnaz Hatami.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Scott Finlayson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, D., Dehestani-Ardakani, M., Hatami, M. et al. Research on the Differences in Phenotypic and Photosynthetic Biophysical Parameters of Begonias (Begonia rex) Cultivars Under Various Light Spectral Compositions. J Plant Growth Regul 43, 106–121 (2024). https://doi.org/10.1007/s00344-023-11059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11059-z

Keywords

Navigation