Log in

iTRAQ Protein Profiling of Adventitious Root Formation in Mulberry Hardwood Cuttings

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The ability to form mature adventitious roots (AR) provides a competitive advantage for clonal multiplication of elite genotypic plant species, because high economic losses occur as a result of insufficient rooting. To better understand potential mechanisms involved in AR formation, we utilized an iTRAQ-based proteomic approach on mulberry hardwood cuttings. A total of 4427 proteins were identified from the base of cuttings, of which 595 and 231 proteins showed differential accumulations in the two periods of rooting, respectively. Three differentially expressed enzyme proteins were validated by an enzyme assay and qPCR. Functional annotation analysis showed that dysregulated proteins were involved in glucose metabolism, flavonoids biosynthesis, cell wall modification, and hormone regulation, indicating potential contributions to adventitious rooting. These results provide fundamental and important information for research on the molecular mechanism of AR development in mulberry cuttings and facilitate rooting efficiency in agricultural practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahkami AH, Lischewski S, Haensch K-T, Porfirova S, Hofmann J, Rolletschek H, Melzer M, Franken P, Hause B, Druege U, Hajirezaei MR (2009) Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol 181:613–625

    Article  CAS  PubMed  Google Scholar 

  • Ahkami A, Scholz U, Steuernagel B, Strickert M, Haensch KT, Druege U, Reinhardt D, Nouri E, von Wiren N, Franken P, Hajirezaei MR (2014) Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida. PLoS ONE 9:e100997

    Article  PubMed Central  Google Scholar 

  • Bhau B, Wakhlu A (2001) Effect of genotype, explant type and growth regulators on organogenesis in Morus alba. Plant Cell Tissue Org 66:25–29

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brinker M, van Zyl L, Liu W, Craig D, Sederoff RR, Clapham DH, von Arnold S (2004) Microarray analyses of gene expression during adventitious root development in Pinus contorta. Plant Physiol 135:1526–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buer CS, Kordbacheh F, Truong TT, Hocart CH, Djordjevic MA (2013) Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. Planta 238:171–189

    Article  CAS  PubMed  Google Scholar 

  • Cao BH, Gu HJ, Zhang DP, Zhu XD (2008) Rooting capacity and correlative enzymes activities of hardwood cuttings of mulberry. Sci Seric 34(1):96–100

    CAS  Google Scholar 

  • Casado-Vela J, Martinez-Esteso MJ, Rodriguez E, Borras E, Elortza F, Bru-Martinez R (2010) iTRAQ-based quantitative analysis of protein mixtures with large fold change and dynamic range. Proteomics 10:343–347

    Article  CAS  PubMed  Google Scholar 

  • Chandramouli K (2009) Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. HGP, Human genomics and proteomics

    Google Scholar 

  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-adenosylmethionine and methylation. FASEB J 10:471–480

    CAS  PubMed  Google Scholar 

  • Chu P, Yan GX, Yang Q, Zhai LN, Zhang C, Zhang FQ, Guan RZ (2015) iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. J Proteomics 113:244–259

    Article  CAS  PubMed  Google Scholar 

  • Corrêa LR, Paim D, Schwambach J, Fett-Neto A (2005) Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regul 45:63–73

    Article  Google Scholar 

  • Da Costa CT, De Almeida MR, Ruedell CM, Schwambach J, Maraschin FDS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4:133

    Article  PubMed  PubMed Central  Google Scholar 

  • de Klerk G-J, van der Krieken W, de Jong J (1999) Review the formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199

    Article  Google Scholar 

  • Druege U (2009) Involvement of carbohydrates in survival and adventitious root formation of cuttings within the scope of global horticulture. In: Niemi K, Scagel C (eds) Adventitious root formation of forest trees and horticultural plants—from genes to applications. Research Signpost, Kerala, pp 187–208

    Google Scholar 

  • Druege U, Franken P, Lischewski S, Ahkami AH, Zerche S, Hause B, Hajirezaei M-R (2014) Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings. Front Plant Sci 5:494

    Article  PubMed  PubMed Central  Google Scholar 

  • Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Guénin S, Mareck A, Rayon C, Lamour R, Assoumou Ndong Y, Domon J-M, Sénéchal F, Fournet F, Jamet E, Canut H, Percoco G, Mouille G, Rolland A, Rustérucci C, Guerineau F, Van Wuytswinkel O, Gillet F, Driouich A, Lerouge P, Gutierrez L, Pelloux J (2011) Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana. New Phytol 192:114–126

    Article  PubMed  Google Scholar 

  • Gutierrez L, Mongelard G, Flokova K, Pacurar DI, Novak O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajirezaei M, Sonnewald U, Viola R, Carlisle S, Dennis D, Stitt M (1993) Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta 192:16–30

    Article  Google Scholar 

  • Han H, Sun X, **e Y, Feng J, Zhang S (2014) Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi inverted question markx inverted question mark Larix olgensis). BMC Plant Biol 14:305

    Article  PubMed  PubMed Central  Google Scholar 

  • Harborne JB (1999) The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol 27:335–367

    Article  CAS  Google Scholar 

  • Herbert M, Burkhard C, Schnarrenberger C (1979) A survey for isoenzymes of glucosephosphate isomerase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase in C3-, C 4-and crassulacean-acid-metabolism plants, and green algae. Planta 145:95–104

    Article  CAS  PubMed  Google Scholar 

  • Hutchison KW, Singer PB, McInnis S, Diaz-Sala C, Greenwood MS (1999) Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiol 120:827–832

    Article  CAS  PubMed Central  Google Scholar 

  • Jialing C, Longyun X, ** W (2010) A kind of stereo seedling method and products. CHN Patent 200710132106.7, 2 June 2010

  • J-w Kim, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30:142–150

    Article  Google Scholar 

  • Kathiravan K, Ganapathi A, Shajahan A (1997) Adventitious shoot formation and plant regeneration from callus cultures of mulberry (Morus alba L.). Sericologia 37:727–733

    Google Scholar 

  • Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A, Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol 132:1177–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan P, Li W, Wen TN, Shiau JY, Wu YC, Lin W, Schmidt W (2011) iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. Plant Physiol 155:821–834

    Article  CAS  PubMed  Google Scholar 

  • Lee B-R, Kim K-Y, Jung W-J, Avice J-C, Ourry A, Kim T-H (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 58:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Lewis DR, Olex AL, Lundy SR, Turkett WH, Fetrow JS, Muday GK (2013) A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. Plant Cell 25:3329–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S-W, Xue L, Xu S, Feng H, An L (2009) Mediators, genes and signaling in adventitious rooting. Bot Rev 75:230–247

    Article  Google Scholar 

  • Li A, Zhou Y, ** C, Song W, Chen C, Wang C (2013) LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis. Plant Cell Physiol 54:1822–1836

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Czarnecki O, Chourey K, Yang J, Tuskan GA, Hurst GB, Pan C, Chen J-G (2014) Strigolactone-regulated proteins revealed by iTRAQ-based quantitative proteomics in Arabidopsis. J Proteome Res 13:1359–1372

    Article  CAS  PubMed  Google Scholar 

  • Lindroth AM, Saarikoski P, Flygh G, Clapham D, Gronroos R, Thelander M, Ronne H, von Arnold S (2001) Two S-adenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in Pinus contorta. Plant Mol Biol 46:335–346

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Chen S, Jiang J, Zhu L, Zheng C, Han S, Gu J, Sun J, Li H, Wang H, Song A, Chen F (2013) Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation. BMC Genom 14:919

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Muller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    Article  PubMed  Google Scholar 

  • Luschnig C (2002) Auxin transport: ABC proteins join the club. Trends Plant Sci 7:329–332

    Article  CAS  PubMed  Google Scholar 

  • Mishra BS, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE 4:e4502

    Article  PubMed  PubMed Central  Google Scholar 

  • Mylona P, Moerman M, Yang W-C, Gloudemans T, Van De Kerckhove J, van Kammen A, Bisseling T, Franssen H (1994) The root epidermis-specific pea gene RH2 is homologous to a pathogenesis-related gene. Plant Mol Biol 26:39–50

    Article  CAS  PubMed  Google Scholar 

  • Narayan P, Chakraborty S, Rao GS (1989) Regeneration of plantlets from the callus of stem segments of mature plants of Morus alba L. Proc Ind Natl Sci Acad B55:469–472

    Google Scholar 

  • Nie H, Jiao F, Zhang XF, Li XY, Tang Z, Cheng JL (2013) Expression analysis of ethylene-synthesis related genes aco and sams during the rooting process of mulberry softwood cuttings. Sci Seric 39(4):633–637

    CAS  Google Scholar 

  • Nogueira FC, Palmisano G, Schwammle V, Campos FA, Larsen MR, Domont GB, Roepstorff P (2012) Performance of isobaric and isotopic labeling in quantitative plant proteomics. J Proteome Res 11:3046–3052

    Article  CAS  PubMed  Google Scholar 

  • Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, Gruissem W, Vanderschuren H (2011) iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant J 67:145–156

    Article  CAS  PubMed  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    Article  CAS  PubMed  Google Scholar 

  • Quan J, Zhang S, Zhang C, Meng S, Zhao Z, Xu X (2014) Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust. PLoS ONE 9:e108709

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen A, Smith TE, Hunt MA (2009) Cellular stages of root formation, root system quality and survival of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings in different temperature environments. New For 38:285–294

    Article  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M et al (2008) Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 283:31218–31226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17:1343–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140:349–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumar P, Maloney GS, Muday GK (2013) Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol 162:1392–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116:83–91

    CAS  PubMed  Google Scholar 

  • Wei D, Jialing C (2014) Morphological and anatomical observation on cortex rooting process of mulberry (Morus L.) greenwood cuttings. Canye Kexue 40:138–142

    Google Scholar 

  • Wei K, Wang L-Y, Wu L-Y, Zhang C-C, Li H-L, Tan L-Q, Cao H-L, Cheng H (2014) Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). PLoS ONE 9:e107201

    Article  PubMed  PubMed Central  Google Scholar 

  • Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J 21:553–562

    Article  CAS  PubMed  Google Scholar 

  • Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS (2013) iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteomics 93:179–206

    Article  CAS  PubMed  Google Scholar 

  • Zavaleta-Mancera HA, Lopez-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-Garcia C, Vargas-Suarez M, Ougham H (2007) Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J Plant Physiol 164:1572–1582

    Article  CAS  PubMed  Google Scholar 

  • Zhuang T, Wei D, **aoyu L, Jialing C (2014) Cloning and expression analysis of mulberry TIR1 gene in various organs and in rooting process of cuttings. Canye Kexue 40:790–796

    Google Scholar 

Download references

Acknowledgments

This work was supported by China Agriculture Research System (Grant No. CARS-22).

Author Contribution

JLC conceived and designed research. ZT and WD conducted experiments. ZT, XLD, and YYB analyzed data. ZT wrote the manuscript. All authors read and approved the manuscript.

Funding

This study was funded by China Agriculture Research System (Grant No. CARS-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaLing Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Zhuang Tang and Wei Du contributed to this work equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Du, W., Du, X. et al. iTRAQ Protein Profiling of Adventitious Root Formation in Mulberry Hardwood Cuttings. J Plant Growth Regul 35, 618–631 (2016). https://doi.org/10.1007/s00344-015-9567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9567-9

Keywords

Navigation