Log in

Effects of seawater acidification on the early development of sea urchin Glyptocidaris crenularis

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In this study, we evaluated the effects of CO2-induced seawater acidification on fertilization, embryogenesis and early larval development in the sea urchin Glyptocidaris crenularis, that inhabits subtidal coastal areas in northern China. The range in seawater pH used in experiments was based on the projections of the Intergovernmental Panel on Climate Change (IPCC), to the year 2100. A natural seawater treatment (pHnbs =7.98±0.03) and three laboratory-controlled acidified treatments (OA1, ΔpH nbs =-0.3 units; OA2, ΔpHnbs =-0.4 units; OA3, ΔpHnbs=-0.5 units) were used in experiments. Results show that: (1) there was a negative effect of seawater acidification on fertilization and on the percentage of abnormal fertilized eggs; (2) the size of early cleavage stage embryos decreased in a dose-dependent manner with decreasing pH; (3) both the hatching rate of blastulae and the survival rate of four-armed pluteus larvae decreased as pH declined; (4) larval abnormalities including asymmetrical development, changes in the length of skeletal elements, and corr oded spicules were observed in all seawater acidified-treatments compared with the control. These data indicate that seawater acidification has a negative impact on the early development of G. crenularis, and supports the hypothesis that the response of echinoderms to ocean acidification (OA) varies among species. Further research is required to clarify the specific cellular mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AQSIQ. 2007. GB/T 12763.4-200. Specifications for oceanographic survey-part 4: survey of chemical parameters in sea water. Standards Press of China, Bei**g, China. p.12–13. (in Chinese)

    Google Scholar 

  • Brennand H S, Soars N, Dworjanyn S A, Davis A R, Byrne M. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One, 5 (6): e11372, https://doi.org/10.1371/journal.pone.0011372.

    Article  Google Scholar 

  • Byrne M, Gonzalez-Bernat M, Doo S, Foo S, Soars N, Lamare M. 2013a. Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis. Mar. Ecol. Prog. Ser., 473: 235–246. https://doi.org/10.3354/meps10058.

    Article  Google Scholar 

  • Byrne M, Lamare M, Winter D, Dworjanyn S A, Uthicke S. 2013b. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos. Trans. R. Soc. B Biol. Sci., 368 (1627): 20120439, https://doi.org/10.1098/rstb.2012.0439.

    Article  Google Scholar 

  • Byrne M, Przeslawski R. 2013. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol., 53 (4): 582–596, https://doi.org/10.1093/icb/ict049.

    Article  Google Scholar 

  • Calosi P, Rastrick S P S, Graziano M, Thomas S C, Baggini C, Carter H A, Hall-Spencer J M, Milazzo M, Spicer J I. 2013. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid-base and ion-regulatory abilities. Mar. Pollut. Bull., 73 (2): 470–484, https://doi.org/10.1016/j.marpolbul.2012.11.040.

    Article  Google Scholar 

  • Chan K Y K, García E, Dupont S. 2015. Acidification reduced growth rate but not swimming speed of larval sea urchins. Sci. Rep., 5: 9764, https://doi.org/10.1038/srep09764.

    Article  Google Scholar 

  • Chang Y Q, Ding J, Song J, Yang W. 2004. The Research of Biology and Aquaculture in Sea Cucumber and Sea Urchins. China Ocean Press, Bei**g, China. p.220–221. (in Chinese)

    Google Scholar 

  • Chang Y Q, Zhang W J, Zhao C, Song J. 2012. Estimates of heritabilities and genetic correlations for growth and gonad traits in the sea urchin Strongylocentrotus intermedius. Aquacul. Res., 43 (2): 271–280, https://doi.org/10.1111/j.1365-2109.2011.02825.x.

    Article  Google Scholar 

  • Dickson A G, Millero F J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res. Pap., 34 (10): 1 733–1 743, https://doi.org/10.1016/0198-0149(87)90021-5.

    Article  Google Scholar 

  • Dupont S, Ortega-Martínez O, Thorndyke M. 2010. Impact of near-future ocean acidification on echinoderms. Ecotoxicology, 19 (3): 449–462, https://doi.org/10.1007/s10646-010-0463-6.

    Article  Google Scholar 

  • Dupont S, Pörtner H. 2013. Marine science: get ready for ocean acidification. Nature, 498 (7455): 429, https://doi.org/10.1038/498429a.

    Article  Google Scholar 

  • Dupont S, Thorndyke M S. 2013. Direct impacts of near-future ocean acidification on sea urchins. In: Fernández-Palacios J M, de Nascimento L, Hernández J C, Clemente S, González A, Díaz-González J P eds. Climate Change Perspective from the Atlantic: Past, Present and Future. Servicio de Publicaciones, Universidad de La Laguna, La Laguna, Spain. p.461–485.

  • Gonzalez-Bernat M J, Lamare M, Barker M. 2013a. Effects of reduced seawater pH on fertilisation, embryogenesis and larval development in the Antarctic seastar Odontaster validus. Polar Biol., 36 (2): 235–247, https://doi.org/0.1007/s00300-012-1255-7.

    Article  Google Scholar 

  • Gonzalez-Bernat M J, Lamare M, Uthicke S, Byrne M. 2013b. Fertilisation, embryogenesis and larval development in the tropical intertidal sand dollar Arachnoides placenta in response to reduced seawater pH. Mar. Biol., 160 (8): 1 927–1 941, https://doi.org/10.1007/s00227-012-2034-2.

    Article  Google Scholar 

  • Grosberg R K, Levitan D R. 1992. For adults only? Supplyside ecology and the history of larval biology. Trends Ecol. Evol., 7 (4): 130–133, https://doi.org/10.1016/0169.

    Article  Google Scholar 

  • Hammond L M, Hofmann G E. 2012. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO2 seawater conditions. J. Exp. Biol., 215 (14): 2 445–2 454, https://doi.org/10.1242/jeb.058008.

    Article  Google Scholar 

  • Hardy N A, Byrne M. 2014. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. Mar. Environ. Res., 102: 78–87. https://doi.org/10.1016/j.marenvres.2014.07.007.

    Article  Google Scholar 

  • Havenhand J N, Buttler F R, Thorndyke M C, Williamson J E. 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr. Biol., 18 (15): R651–R652, https://doi.org/10.1016/j.cub.2008.06.015.

    Article  Google Scholar 

  • IPCC. 2013. Climate change 2013: the physical science basis. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, **a Y, Bex V, Midgley P M eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, New York, USA.

  • Lawrence J M. 2013. Sea Urchins: Biology and Ecology. 3 rd edn. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Liu X L, Chang Y Q, **ang J H, Cao X B. 2005. Estimates of genetic parameters for growth traits of the sea urchin, Strongylocentrotus intermedius. Aquaculture, 243 (1–4): 27–32, https://doi.org/10.1016/j.aquaculture.2004.10.014.

    Article  Google Scholar 

  • Mann K, Wilt F H, Poustka A J. 2010. Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci., 8: 33, https://doi.org/10.1186/1477-5956-8-33.

    Article  Google Scholar 

  • Martin S, Richier S, Pedrotti M L, Dupont S, Castejon C, Gerakis Y, Kerros M E, Oberhänsli F, Teyssié J L, Jeffree R, Gattuso J P. 2011. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J. Exp. Biol., 214 (8): 1 357–1 368, https://doi.org/10.1242/jeb.051169.

    Article  Google Scholar 

  • Mehrbach C, Culberson C H, Hawley J E, Pytkowicx R M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr., 18 (6): 897–907, https://doi.org/10.1007/s10953-013-0094-7.

    Article  Google Scholar 

  • Moulin L, Catarino A I, Claessens T, Dubois P. 2011. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Mar. Pollut. Bull., 62 (1): 48–54, https://doi.org/10.1016/j.marpolbul.2010.09.012.

    Article  Google Scholar 

  • Pearse J S. 2006. Ecological role of purple sea urchins. Science, 314 (5801): 940–941.

    Article  Google Scholar 

  • Schlegel P, Binet M T, Havenhand J N, Doyle C J, Williamson J E. 2015. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tip** point. J. Exp. Biol., 218 (7): 1 084–1 090, https://doi.org/10.1242/jeb.114900.

    Article  Google Scholar 

  • Stumpp M, Hu M Y, Melzner F, Gutowska M A, Dorey N, Himmerkus N, Holtmann W C, Dupont S T, Thorndyke M C, Bleich M. 2012. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl. Acad. Sci. USA, 109 (44): 18 192–18 197, https://doi.org/10.1073/pnas.1209174109.

    Article  Google Scholar 

  • Todgham A E, Hofmann G E. 2009. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J. Exp. Biol., 212 (16): 2 579–2 594, https://doi.org/10.1242/jeb.032540.

    Article  Google Scholar 

  • Zhan Y Y, Hu W B, Duan L Z, Liu M B, Zhang W J, Chang Y Q, Li C. 2017. Effects of seawater acidification on early development of the sea urchin Hemicentrotus pulcherrimus. Aquacult. Int., 25 (2): 655–678, https://doi.org/10.1007/s10499-016-0064-3.

    Article  Google Scholar 

  • Zhan Y Y, Hu W B, Zhang W J, Liu M B, Duan L Z, Huang X Y, Chang Y Q, Li C. 2016. The impact of CO2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius. Mar. Pollut. Bull., 112 (1–2): 291–302, https://doi.org/10.1016/j.marpolbul.2016.08.003.

    Article  Google Scholar 

Download references

Acknowledgement

We are very grateful to the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqing Chang  (常亚青).

Additional information

Supported by the National Natural Science Foundation of China (No. 41206128), the Program for Liaoning Excellent Talents in University (No. LJQ2013079), and the National High Technology Research and Development Program of China (863 Program) (No. 2012AA10A412)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Hu, W., Duan, L. et al. Effects of seawater acidification on the early development of sea urchin Glyptocidaris crenularis. J. Ocean. Limnol. 36, 1442–1454 (2018). https://doi.org/10.1007/s00343-018-6317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-6317-4

Keyword

Navigation