Log in

Spatial–temporal radiation distribution in a CuBr vapor brightness amplifier in a real laser monitor scheme

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The non-uniform gain of the active media is a significant issue in terms of optimizing the beam profile and ensuring image quality of the laser monitor. In this paper, a study of the radial distribution of radiation in copper bromide brightness amplifiers in real schemes of laser monitors is presented. The radial distribution of radiation in a two-pass parallel beam amplified by a brightness amplifier is compared with the radiation distribution in a beam that carries an image in conventional and mirror-imaging laser monitors. The results demonstrate that for metal vapor gain media operated at low concentration of the working substance vapors, the appropriate choice of imaging optics can partially or completely uniform image intensity profile. In case of remote laser monitoring, the intensity dip at the center of the amplified beam completely disappears in the mirror-imaging laser monitor up to a distance of 2 m from the brightness amplifier. This observation range is sufficient for most tasks in the study of the combustion of energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.I. Zemskov, A.A. Isaev, M.A. Kazaryan, G.G. Petrash, Sov. J. Quantum Electron. 4, 5 (1974)

    ADS  Google Scholar 

  2. K.I. Zemskov, M.A. Kazaryan, V.M. Matveev, G.G. Petrash, M.P. Samsonova, A.S. Skripnichenko, Sov. J. Quantum Electron. 14, 288 (1984)

    ADS  Google Scholar 

  3. D.N. Astadjov, N.K. Vuchkov, K.I. Zemskov, A.A. Isaev, M.A. Kazaryan, G.G. Petrash, N.V. Sabotinov, Sov. J. Quantum Electron. 15, 457 (1988)

    ADS  Google Scholar 

  4. Optical Systems with Brightness Amplifiers, ed. by G.G. Petrash (Nauka, Moscow, 1991)

  5. V.M. Batenin, I.I. Klimovsky, L.A. Selezneva, Sov. Phys. Doklady 33, 949 (1988)

    ADS  Google Scholar 

  6. D.V. Abramov, S.M. Arakelyan, A.F. Galkin, I.I. Klimovskii, A.O. Kucherik, V.G. Prokoshev, Quantum Electron. 36, 569 (2006)

    ADS  Google Scholar 

  7. R.O. Buzhinsky, V.V. Savransky, K.I. Zemskov, A.A. Isaev, O.I. Buzhinsky, Plasma Phys. Rep. 36, 1269 (2010)

    ADS  Google Scholar 

  8. V.M. Yermachenko, A.P. Kuznetsov, V.N. Petrovskiy, N.M. Prokopova, A.P. Streltsov, S.A. Uspenskiy, Laser Phys. 21, 1530 (2011)

    Google Scholar 

  9. G.S. Evtushenko, M.V. Trigub, F.A. Gubarev, T.G. Evtushenko, S.N. Torgaev, D.V. Shiyanov, Rev. Sci. Instrum. 85, 033111 (2014)

    ADS  Google Scholar 

  10. D.V. Rybka, M.V. Trigub, D.A. Sorokin, G.S. Evtushenko, V.F. Tarasenko, Atmos. Ocean. Opt. 27, 582 (2014)

    Google Scholar 

  11. G. Evtushenko, S. Torgaev, M. Trigub, D. Shiyanov, E. Bushuev, A. Bolshakov, K. Zemskov, V. Savransky, V. Ralchenko, V. Konov, Opt. Laser Technol. 120, 105716 (2019)

    Google Scholar 

  12. C.E. Little, Metal Vapor Lasers: Physics, Engineering and Applications (Wiley, Chichester, 1999)

    Google Scholar 

  13. M.J. Withford, D.J.W. Brown, R.P. Mildren, R.J. Carman, G.D. Marshall, J.A. Piper, Prog. Quantum Electron. 28, 165 (2004)

    ADS  Google Scholar 

  14. D. Astadjov, L. Stoychev, N. Sabotinov, Opt. Quant. Electron. 39, 603 (2007)

    Google Scholar 

  15. G.S. Evtushenko, D.V. Shiyanov, F.A. Gubarev, Metal Vapour Lasers with High Pulse Repetition Rates (Izd. Tomskogo Politekhnicheskogo Univers., Tomsk, 2010)

    Google Scholar 

  16. A.N. Soldatov, N.V. Sabotinov, Y.P. Polunin, A.S. Shumeiko, I.K. Kostadinov, A.V. Vasilieva, I.V. Reimer, Proc. SPIE 9810, 981009 (2015)

    Google Scholar 

  17. G.N. Tiwari, P.K. Shukla, R.K. Mishra, V.K. Shrivastava, R. Khare, S.V. Nakhe, Opt. Commun. 338, 322 (2015)

    ADS  Google Scholar 

  18. M.A. Kazaryan, V.M. Batenin, V.V. Buchanov, A.M. Boichenko, I.I. Klimovskii, E.I. Molodykh, High Brightness Metal Vapor Lasers: Physics and Applications (CRC Press, Boca Raton, 2017)

    MATH  Google Scholar 

  19. A.G. Grigor'yants, M.A. Kazaryan, N.A. Lyabin, Laser Precision Microprocessing of Materials, 1st edn. (CRC Press, Boca Raton, 2019)

    Book  Google Scholar 

  20. L. Li, A.P. Ilyin, F.A. Gubarev, A.V. Mostovshchikov, M.S. Klenovskii, Ceram. Int. 44, 19800 (2018)

    Google Scholar 

  21. L. Li, A.V. Mostovshchikov, A.P. Ilyin, A. Smirnov, F.A. Gubarev, I.E.E.E.T. Instrum, Measurements 69, 457 (2020)

    Google Scholar 

  22. V.E. Zarko, A.A. Gromov, Energetic Nanomaterials: Synthesis, Characterization, and Application (Elsevier, Amsterdam, 2016)

    Google Scholar 

  23. D.S. Sundaram, V. Yang, E. Zarko, Combust. Explos. Shock Waves 51, 173 (2015)

    Google Scholar 

  24. S.L. Kharatyan, A.G. Merzhanov, J. Self-Propag, High Temp. Synth. 21, 59 (2012)

    Google Scholar 

  25. V.V. Zakorzhevskii, I.P. Borovinskaya, N.V. Sachkova, Inorg. Mater. 38, 1131 (2002)

    Google Scholar 

  26. A.V. Mostovshchikov, A.P. Ilyin, I.S. Egorov, Radiat. Phys. Chem. 153, 156 (2018)

    ADS  Google Scholar 

  27. M.L. Pantoya, J.J. Granier, Propellants Explos. Pyrotech. 30, 53 (2005)

    Google Scholar 

  28. K.L. McNesby, B.E. Homan, R.A. Benjamin, V.M. Boyle, J.M. Densmore, M.M. Biss, Rev. Sci. Instrum. 87, 051301 (2016)

    Google Scholar 

  29. F.A. Gubarev, L. Li, M.S. Klenovskii, D.V. Shiyanov, Appl. Phys. B Laser Opt. 122, 284 (2016)

    ADS  Google Scholar 

  30. F.A. Gubarev, M.V. Trigub, M.S. Klenovskii, L. Li, G.S. Evtushenko, Appl. Phys. B Laser Opt. 122, 2 (2016)

    ADS  Google Scholar 

  31. F.A. Gubarev, L. Li, M.S. Klenovskii, IOP Conf. Ser. Mater. Sci. Eng. 124, 012016 (2016)

    Google Scholar 

  32. F.A. Gubarev, S. Kim, L. Li, A.V. Mostovshchikov, A.P. Il’in, Instrum. Exp. Tech. 63, 379 (2020)

    Google Scholar 

  33. D.V. Shiyanov, G.S. Evtushenko, V.B. Sukhanov, V.F. Fedorov, Quantum Electron. 37, 49 (2007)

    ADS  Google Scholar 

  34. V.A. Dimaki, V.B. Sukhanov, V.O. Troitskii, A.G. Filonov, Instrum. Exp. Tech. 55, 696 (2012)

    Google Scholar 

  35. A.G. Filonov, D.V. Shiyanov, Instrum. Exp. Tech. 56, 349 (2013)

    Google Scholar 

  36. F.A. Gubarev, D.V. Shiyanov, V.B. Sukhanov, G.S. Evtushenko, IEEE J. Quant. Electron. 49, 89–94 (2013)

    ADS  Google Scholar 

  37. F.A. Gubarev, V.F. Fedorov, K.V. Fedorov, D.V. Shiyanov, G.S. Evtushenko, Quantum Electron. 46, 57 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

The research is carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Gubarev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Shiyanov, D.V. & Gubarev, F.A. Spatial–temporal radiation distribution in a CuBr vapor brightness amplifier in a real laser monitor scheme. Appl. Phys. B 126, 155 (2020). https://doi.org/10.1007/s00340-020-07511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07511-7

Navigation