Log in

Time-domain measurements of S-branch N2–N2 Raman linewidths using picosecond pure rotational coherent anti-Stokes Raman spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Time-resolved dual-broadband picosecond pure rotational CARS has been applied to measure self-broadened S-branch N2–N2 Raman linewidths in the temperature range 294–1466 K. The coherence decays were detected directly in the time domain by following the J-dependent CARS signal decay as a function of probe delay. The rotational Raman N2–N2 linewidths were derived from these time-dependent decays and evaluated for thermometric accuracy. Comparisons were made to the energy-corrected sudden (ECS) and modified exponential gap (MEG) dynamical scaling laws, and the results were used to quantify the sensitivity of nanosecond rotational CARS thermometry to the linewidth model employed. The uncertainty based on the linewidth model used in pure N2 was found to be 2 %. The merits and limitations of this rapid method for the determination of accurate Raman linewidths are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, New York, 1996)

    Google Scholar 

  2. S. Roy, J.R. Gord, A.K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010). doi:10.1016/j.pecs.2009.11.001

    Article  Google Scholar 

  3. J.I. Steinfeld, P. Ruttenberg, G. Millot, G. Fanjoux, B. Lavorel, J. Phys. Chem. 95, 9638 (1991)

    Article  Google Scholar 

  4. A.E. Depristo, S.D. Augustin, R. Ramaswamy, H. Rabitz, J. Chem. Phys. 71, 850 (1979). doi:10.1063/1.438376

    Article  ADS  Google Scholar 

  5. M.L. Koszykowski, L.A. Rahn, R.E. Palmer, M.E. Coltrin, J. Phys. Chem. 91, 41 (1987). doi:10.1021/j100285a012

    Article  Google Scholar 

  6. S. Roy, T.R. Meyer, J.R. Gord, Opt. Lett. 30, 3222 (2005)

    Article  ADS  Google Scholar 

  7. S. Roy, T.R. Meyer, J.R. Gord, Appl. Phys. Lett. 87 (2005). doi:10.1063/1.2159576

  8. T.R. Meyer, S. Roy, J.R. Gord, Appl. Spectrosc. 61, 1135 (2007)

    Article  ADS  Google Scholar 

  9. T. Seeger, J. Kiefer, A. Leipertz, B. Patterson, C. Kliewer, T. Settersten, Opt. Lett. 34, 3755 (2009)

    Article  ADS  Google Scholar 

  10. T. Seeger, J. Kiefer, Y. Gao, B. Patterson, C. Kliewer, T. Settersten, Opt. Lett. 35, 20402 (2010)

    Article  Google Scholar 

  11. C.J. Kliewer, Y. Gao, T. Seeger, B.D. Patterson, R.L. Farrow, T.B. Settersten, Appl. Opt. 50, 1770 (2011)

    Article  ADS  Google Scholar 

  12. M. Schenk, T. Seeger, A. Leipertz, Appl. Opt. 39, 6918 (2000)

    Article  ADS  Google Scholar 

  13. C.J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B.D. Patterson, T.B. Settersten, Proc. Combust. Inst. 33, 831 (2011). doi:10.1016/j.proci.2010.05.067

    Article  Google Scholar 

  14. W.D. Kulatilaka, P.S. Hsu, H.U. Stauffer, J.R. Gord, S. Roy, Appl. Phys. Lett. 97 (2010). doi:10.1063/1.3483871

  15. L.A. Rahn, R.E. Palmer, J. Opt. Soc. Am. B, Opt. Phys. 3, 1164 (1986)

    Article  ADS  Google Scholar 

  16. J.D. Miller, S. Roy, M.N. Slipchenko, J.R. Gord, T.R. Meyer, Opt. Express 19, 15627 (2011)

    Article  ADS  Google Scholar 

  17. A. Bohlin, F. Vestin, J. Bonamy, P. Joubert, P.E. Bengtsson, J. Raman Spectrosc. 41, 875 (2010). doi:10.1002/jrs.2663

    Article  ADS  Google Scholar 

  18. J.D. Miller, S. Roy, J.R. Gord, T.R. Meyer, J. Chem. Phys. 135 (2011). doi:10.1063/1.3665932

  19. L. Martinsson, P.E. Bengtsson, M. Alden, S. Kroll, J. Bonamy, J. Chem. Phys. 99, 2466 (1993)

    Article  ADS  Google Scholar 

  20. A. Bohlin, F. Vestin, P. Joubert, J. Bonamy, P.E. Bengtsson, J. Raman Spectrosc. 40, 788 (2009). doi:10.1002/jrs.2235

    Article  ADS  Google Scholar 

  21. L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saintloup, R. Chaux, J. Santos, H. Berger, J. Chem. Phys. 89, 5568 (1988)

    Article  ADS  Google Scholar 

  22. B. Lavorel, G. Millot, J. Bonamy, D. Robert, Chem. Phys. 115, 69 (1987). doi:10.1016/0301-0104(87)80179-9

    Article  Google Scholar 

Download references

Acknowledgements

Funding provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. PEB, AB, and EN acknowledge the financial support of the Swedish Energy Agency and the Centre of Combustion Science and Technology (CECOST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Kliewer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kliewer, C.J., Bohlin, A., Nordström, E. et al. Time-domain measurements of S-branch N2–N2 Raman linewidths using picosecond pure rotational coherent anti-Stokes Raman spectroscopy. Appl. Phys. B 108, 419–426 (2012). https://doi.org/10.1007/s00340-012-5037-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5037-2

Keywords

Navigation