Log in

Electrode-free optical sensor for high voltage using a domain-inverted LiNbO3 waveguide near cut-off

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a novel all-optical electric field sensor based on a proton-exchange waveguide near cut-off, centered on a few microns wide domain-inverted region in a z-cut LiNbO3 substrate. The output intensity from the waveguide is modulated by an external electric field via the electro-optic effect. We also demonstrate the sensor’s performance by detecting DC fields up to 2.6 MV/m and high-frequency (1.1 GHz) fields ranging from 19 V/m to 23 kV/m. These features and the proposed design allow operating the sensor without the use of any metal antenna, thus making it suited for use in high electric field and harsh conditions—e.g. power stations and transmission lines—without any danger for the operator or risk of damage to the sensor head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.H. Lee, F.-T. Hwang, W.-T. Shay, C.-T. Lee, Microw. Opt. Technol. Lett. 48, 9 (2006)

    Google Scholar 

  2. G. Gaborit, L. Duvilaret, in ECIO’05, Grenoble (2005)

    Google Scholar 

  3. A. Garzarella, S.B. Qadri, D.H. Wu, Appl. Phys. Lett. 94, 221113 (2009)

    Article  ADS  Google Scholar 

  4. C.H. Bulmer, Appl. Phys. Lett. 53, 2368 (1988)

    Article  ADS  Google Scholar 

  5. D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, J. Latess, J. Lightwave Technol. 12, 6 (1994)

    Article  Google Scholar 

  6. P.P. Chavez, F. Rahmatian, N.A.F. Jaeger, in IEEE/PES Transmission and Distribution Conf. Expos., Atlanta (2001)

    Google Scholar 

  7. D. Runde, S. Brunken, C.E. Rüter, D. Kip, Appl. Phys. B 86, 91 (2007)

    Article  ADS  Google Scholar 

  8. A. Neyer, W. Sohler, Appl. Phys. Lett. 35, 256 (1979)

    Article  ADS  Google Scholar 

  9. N.H. Zhu, E.Y.B. Pun, P.S. Chang, IEE Proc. Optoelectron. 142, 248 (1995)

    Article  Google Scholar 

  10. P.R. Ashley, W.S. Chang, Appl. Phys. Lett. 45, 840 (1984)

    Article  ADS  Google Scholar 

  11. R. Chen, C.S. Tsai, Opt. Lett. 11, 546 (1986)

    Article  ADS  Google Scholar 

  12. S.S. Lee, M.C. Oh, S.Y. Shin, K.H. Keh, Photonics Technol. Lett. 5, 9 (1993)

    Google Scholar 

  13. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), p. 15

    Google Scholar 

  14. M.L. Bortz, M.M. Feier, Opt. Lett. 16, 23 (1991)

    Article  Google Scholar 

  15. J.M.M.M. de Almeida, Opt. Eng. 46, 6 (2007)

    Google Scholar 

  16. F. Cecelja, M. Bordovsky, W. Balachandran, IEEE Trans. Instrum. Meas. 50, 2 (2001)

    Article  Google Scholar 

  17. Y.-J. Yang, Y.C. Wang, G.F. Chen, Y.S. Wang, W. Zhao, Chin. Phys. Lett. 24, 4 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tulli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tulli, D., Janner, D., Garcia-Granda, M. et al. Electrode-free optical sensor for high voltage using a domain-inverted LiNbO3 waveguide near cut-off. Appl. Phys. B 103, 399–403 (2011). https://doi.org/10.1007/s00340-011-4433-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4433-3

Keywords

Navigation