Log in

X-ray analysis of Ag nanoparticles on Si wafer and influence of Ag nanoparticles on Si nanowire-based gas sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here, the room temperature deposition of silver (Ag) nanoparticles (NPs) on silicon (Si) substrate has been carried out by a simple chemical route to investigate their elastic and micro-structural properties. The theoretical X-ray peak profile analysis has been pursued through the Scherrer model, modified Scherrer model, modified Williamson–Hall model, size–strain plot model and Halder–Wagner model. The X-ray diffraction (XRD) analysis results in the crystalline nature of Ag NPs having nearer dodecahedron structure. The parameters including micro-strain, internal stress and energy density have been estimated for all reflection peaks of XRD. The findings show that the nano-crystalline size (NCS) estimated from all models is in reasonably good agreement. This analysis can pave the way for novel research avenues by comparing the estimated elastic and micro-structural properties of Ag NPs as a potential alternative tool to existing characterization techniques and helpful in fabricating different sizes of Ag–Si nanostructure-based gas-sensing devices. The influence of Ag nanoparticles on Si nanowire towards acetone gas sensor has been studied and achieved remarkable sensitivity 98.77% at 5 MHz frequency with operating temperature at 50 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that has been used is confidential.

References

  1. J.H. Lee, A. Mirzaei, J.Y. Kim, J.H. Kim, H.W. Kim, S.S. Kim, Optimization of the surface coverage of metal nanoparticles on nanowires gas sensors to achieve the optimal sensing performance. Sens. Actuators B 302, 127196 (2020)

    Google Scholar 

  2. X. Yang, H. Zhong, Y. Zhu, H. Jiang, J. Shen, J. Huang, C. Li, Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2, 9040–9047 (2014)

    Google Scholar 

  3. A. Colombelli, M.G. Manera, A. Taurino, M. Catalano, A. Convertino, R. Rella, Au nanoparticles decoration of silica nanowires for improved optical bio-sensing. Sens. Actuators B 226, 589–597 (2016)

    Google Scholar 

  4. D.N. Oosthuizen, D.E. Motaung, H.C. Swart, Gas sensors based on CeO2 nanoparticles prepared by chemical precipitation method and their temperature-dependent selectivity towards H2S and NO2 gases. Appl. Surf. Sci. 505, 144356 (2020)

    Google Scholar 

  5. V. Kashyap, H. Pawar, C. Kumar, N. Chaudhary, K. Saxena, Analysis of synthesized doped vertical silicon nanowire arrays for effective sensing of nitrogen dioxide: as gas sensors. Front. Mater. 9, 1–14 (2022)

    Google Scholar 

  6. R. Ghosh, P.K. Giri, Silicon nanowire heterostructures for advanced energy and environmental applications: a review. Nanotechnology 28, 1–27 (2017)

    Google Scholar 

  7. V. Kashyap, N. Chaudhary, N. Goyal, K. Saxena, Cost effective synthesis of semiconductor nanowires. AIP Conf. Proc. 2162, 1–4 (2019)

    Google Scholar 

  8. V. Kashyap, N. Chaudhary, N. Goyal, K. Saxena, Fabrication and characterization of silicon nanowires with MACE method to influence the optical properties. Mater. Today Proc. 49, 3409–3413 (2021)

    Google Scholar 

  9. K. Oh, L. Joanny, F. Gouttefangeas, B. Fabre, V. Dorcet, B. Lassalle-Kaiser, A. Vacher, C. Mériadec, S. Ababou-Girard, G. Loget, Black silicon photoanodes entirely prepared with abundant materials by low-cost wet methods. ACS Appl. Energy Mater. 2, 1006–1010 (2019)

    Google Scholar 

  10. Y. Hou, X. Du, S. Scheiner, D.P. McMeekin, Z. Wang, N. Li, M.S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N.A. Luechinger, A. Hirsch, P. Schmuki, H.P. Steinrück, R.H. Fink, M. Halik, H.J. Snaith, C.J. Brabec, A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017)

    ADS  Google Scholar 

  11. M.M.A. Hakim, M. Lombardini, K. Sun, F. Giustiniano, P.L. Roach, D.E. Davies, P.H. Howarth, M.R.R. De Planque, H. Morgan, P. Ashburn, Nano Lett. Lett. 12, 1868–1872 (2012)

    ADS  Google Scholar 

  12. Kashyap V, Chaudhary N, Goyal N and Saxena K 2021 The analysis of fabricated silicon nanowires with various techniques: A roadmap to energy saving world IOP Conference Series: Materials Science and Engineering 1033

  13. A. Street, Silicon K. Phys. Rev. B 35, 7959–7965 (1987)

    Google Scholar 

  14. Y. Ishikawa, N. Shibata, S. Fukatsu, Fabrication of highly oriented Si:SiO2 nanoparticles using low energy oxygen ion implantation during Si molecular beam epitaxy. Appl. Phys. Lett. 68, 2249–2251 (1996)

    ADS  Google Scholar 

  15. B. Fuhrmann, H.S. Leipner, H.R. Höche, L. Schubert, P. Werner, U. Gösele, Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 5, 2524–2527 (2005)

    ADS  Google Scholar 

  16. T.K. Adhila, H. Elangovan, S. John, K. Chattopadhyay, H.C. Barshilia, Engineering the microstructure of silicon nanowires by controlling the shape of the metal catalyst and composition of the etchant in a two-step MACE process: an in-depth analysis of the growth mechanism. Langmuir 36, 9388–9398 (2020)

    Google Scholar 

  17. S.K. Saxena, P. Yogi, P. Yadav, S. Mishra, H. Pandey, H.M. Rai, V. Kumar, P.R. Sagdeo, R. Kumar, Role of metal nanoparticles on porosification of silicon by metal induced etching (MIE). Superlattices Microstruct.Microstruct. 94, 101–107 (2016)

    ADS  Google Scholar 

  18. J. Zhang, X. Zhang, S. Chen, T. Gong, Y. Zhu, Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles. Carbon 100, 395–407 (2016)

    Google Scholar 

  19. M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan, G. Long, F. Tan, A. Johnston, Y. Zhao, O. Voznyy, E.H. Sargent, Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018)

    ADS  Google Scholar 

  20. P. Patra, R. Kumar, C. Kumar, P.K. Mahato, Ni-incorporated cadmium sulphide quantum dots for solar cell: an evolution to microstructural and linear-nonlinear optical properties. J. Cryst. Growth 583, 126542 (2022)

    Google Scholar 

  21. P. Muhammed Shafi, A. Chandra Bose, Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. 5, 1–10 (2015)

    Google Scholar 

  22. H. Pawar, M. Khan, M. Kumari, U. K. D. Tara, P. Ranveer, Role of calcination on dielectric properties of ­ BaTiO3 nanoparticles as a gas sensor. Appl. Phys. A 127, 1–10 (2021)

    Google Scholar 

  23. C. N. R. Rao, A. Govindaraj, G. Gundiah, S. R. C. Vivekchand, Nanotubes Nanowires 59, 4665–4671 (2004)

    Google Scholar 

  24. H. Pawar, M. Khan, C. Mitharwal, U.K. Dwivedi, RSC Adv. 3, 35265–35272 (2020)

    ADS  Google Scholar 

  25. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H.E. Nilsson, W. **ong, B. Xu, Y. Li, H.H. Radamson, Silicon nanowires for gas sensing: a review. Nanomaterials 10, 1–57 (2020)

    Google Scholar 

  26. D.A. Hashim, A.M. Alwan, M.F. Jawad, Influence of Ag NPs on silicon nanocolumns NH 3 gas sensors. J. Electrochem. Soc.Electrochem. Soc. 165, B773–B778 (2018)

    Google Scholar 

  27. S.K. Saxena, V. Kumar, H.M. Rai, G. Sahu, R. Late, K. Saxena, A.K. Shukla, P.R. Sagdeo, R. Kumar, Study of porous silicon prepared using metal-induced etching (MIE): a comparison with laser-induced etching (LIE). SILICON 9, 483–488 (2017)

    Google Scholar 

  28. V. Kashyap, N. Chaudhary, N. Goyal, K. Saxena, Band gap modification for enhancement in optoelectronic properties with silicon nanowire. Mater. Today: Proc. 45, 5221–5224 (2021)

    Google Scholar 

  29. Qu. Yongquan, R. Cheng, Q. Su, R. D, Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag. J. Am. Chem. Soc. 133, 16730–16733 (2011)

    Google Scholar 

  30. X. Liu, L. Jia, G. Fan, J. Gou, S.F. Liu, B. Yan, Au nanoparticle enhanced thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 225–234 (2016)

    Google Scholar 

  31. E. Environ, B. M. Bang, H. Kim, H. Song, J. Cho, S. Park, Environ. Sci. Chem. Etching 4, 5013–5019 (2011)

    Google Scholar 

  32. Z. Ren, C. Shen, K. Yuan, J. You, N. Li, K. **e, Synthesis of silver sulfide nanowires: variation of the morphology and structure. Mater. Today Commun. 31, 103719 (2022)

    Google Scholar 

  33. A. Abdulkadir, M.Z. Pakhuruddin, Effects of hydrogen peroxide concentration on properties of black silicon fabricated by two-step silver-assisted wet chemical etching for photovoltaics. Iraqi J. Phys. 20, 11–25 (2022)

    Google Scholar 

  34. N. Singh, M.K. Sahoo, P.G. Kale, Effect of MACE parameters on length of porous silicon nanowires (PSiNWs). J. Crystal Growth 496–497, 10–14 (2018)

    ADS  Google Scholar 

  35. A. Begum, A. Hussain, A. Rahman, Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films. Beilstein J. Nanotechnol. J. Nanotechnol. 3, 438–443 (2012)

    Google Scholar 

  36. M. Khan, H. Pawar, M. Kumari, C. Patra, G. Patel, U. K. Dwivedi, D. Rathore, Effect of concentration of SiC on physicochemical properties of CoFe2O4/SiC nanocomposites. J. Alloys Compd. 840, 155596 (2020)

    Google Scholar 

  37. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD world. J. Nano Sci. Eng. 02, 154–160 (2012)

    Google Scholar 

  38. A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011)

    ADS  Google Scholar 

  39. B. Rajesh Kumar, B. Hymavathi, X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson-Hall and size-strain plot methods. J. Asian Ceramic Soc. 5, 94–103 (2017)

    Google Scholar 

  40. A. Bragaru, M. Kusko, E. Vasile, M. Simion, M. Danila, T. Ignat, I. Mihalache, R. Pascu, F. Craciunoiu, Analytical characterization of engineered ZnO nanoparticles relevant for hazard assessment. J. Nanopart. Res. 15, 1–17 (2013)

    Google Scholar 

  41. S. Navaladian, B. Viswanathan, T. K. Varadarajan, R. P. Viswanath, Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation. Nanotechnology 19, 1–8 (2008)

    Google Scholar 

  42. S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, A rapid synthesis of oriented palladium nanoparticles by UV irradiation. Nanoscale Res. Lett. 4, 181–186 (2009)

    ADS  Google Scholar 

  43. M. Khan, H. Pawar, M. Kumari, C. Patra, G. Patel, U.K. Dwivedi, D. Rathore, Effect of concentration of SiC on physicochemical properties of CoFe2O4/SiC nanocomposites. J. Alloys Compd. 840, 155596 (2020)

    Google Scholar 

Download references

Acknowledgements

One of the authors (Vikas Kashyap) acknowledges financial support as SRF (Senior Research Fellowship) from University Grant Commission (UGC) India. The Authors would like to acknowledge Dr. Deepak Kumar Vashista from CSIO Chandigarh for their valuable suggestions and Dr. Deepshikha Rathore, Amity University Rajasthan, Jaipur, for utilizing gas-sensing unit.

Funding

This research was supported by UGC-CSIR (Grant 511636).

Author information

Authors and Affiliations

Authors

Contributions

Vikas Kashyap: visualization, conceptualization, writing—review and editing, Chandra Kumar: visualization, conceptualization, writing—review and editing, Hari om Pawar: writing—original draft, Anand Kumar: visualization and editing, Isha: visualization and editing, Kanishk Poria: visualization, Neeru Chaudhary: visualization, review and editing, Navdeep Goyal: visualization, review and editing, Hariom Pawar: conceptualization, writing—review and editing.

Corresponding authors

Correspondence to Hariom Pawar or Chandra Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, V., Pawar, H., Sihmar, I. et al. X-ray analysis of Ag nanoparticles on Si wafer and influence of Ag nanoparticles on Si nanowire-based gas sensor. Appl. Phys. A 130, 238 (2024). https://doi.org/10.1007/s00339-024-07379-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07379-w

Keywords

Navigation