Log in

On resistive switching and dielectric spectroscopy characteristics of topological insulator-based heterojunction for memory applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein, bismuth telluride (Bi2Te3) thin films thermally grown under vacuum have been integrated with p-Si in a heterojunction configuration of Au/Bi2Te3/p-Si/Al for resistive switching random-access memory (RRAM) applications. The quality of the grown films was evaluated in terms of crystal structure and films’ morphology using XRD and FE-SEM techniques, respectively. The dark I-V under swee** cycles between ± 5 Volts revealed the bidirectional RRAM features. The heterojunction parameters are extracted using Thermionic emission and Cheung-Cheung models. The conduction mechanism under forward/reverse biasing is discussed, emphasizing the impact of the interfacial states profile on the junction performance. Furthermore, the AC spectroscopical features of the designed heterojunction have been tested under different modulating frequencies, declaring a nontrivial capacitance behavior (i.e., negative capacitance). Based on the recorded (C-V) data at different frequencies, the built-in potential, Vbi, depletion region width, Wd, acceptor do** concertation, NA, and barrier height, ΦB, are evaluated. The extracted Vbi, Wd, NA, and ΦB magnitudes at 1 MHz were about 0.6 Volt, 1.06 μm, 7.16 × 1026 cm−3, and 1.095 eV, respectively. Ultimately, the Re [Z]-Im [Z] plot showed an interesting switching plot behavior with notable promising negative capacitance features. This astonishing performance of the fabricated heterojunction suggests this design for memristor applicability. An exciting [Re [Z]-Im [Z]] relation plot that may be useful in fabricating electrical switching electronic devices by using the frequency of the applied AC signal as a probe controlling factor (10 kHz to 7 MHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared for legal or ethical reasons.

References

  1. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    ADS  Google Scholar 

  2. J. Liu, Y. Li, Y. Song, Y. Ma, Q. Chen, Z. Zhu, P. Lu, S. Wang, Bi2Te3 photoconductive detectors on Si. Appl. Phys. Lett. 110, 141109 (2017)

    ADS  Google Scholar 

  3. J. Wang, C. Gorini, K. Richter, Z. Wang, Y. Ando, D. Weiss, Two-dimensional-dirac surface states and bulk gap probed via quantum capacitance in a three-dimensional topological insulator. Nano Lett. 20(12), 8493–8499 (2020)

    ADS  PubMed  Google Scholar 

  4. F. **a, H. Wang, D. **ao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8, 899 (2014)

    ADS  Google Scholar 

  5. Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325(5937), 178–181 (2009)

    ADS  PubMed  Google Scholar 

  6. Z. Wang, R.L.J. Qiu, C.H. Lee, Z. Zhang, X.P.A. Gao, Ambipolar surface conduction in ternary topological insulator Bi2(Te1–xSex)3 nanoribbons. ACS Nano 7(3), 2126 (2013)

    PubMed  Google Scholar 

  7. D. Kim, S. Cho, N.P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, M.S. Fuhrer, Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 8(6), 459 (2012)

    Google Scholar 

  8. M.N. Hasan, H. Wahid, N. Nayan, M.S.M. Ali, Inorganic thermoelectric materials: a review. Int. J. Energy Res. 44(8), 6170–6222 (2020)

    Google Scholar 

  9. X. Tang, W. **e, H. Li, W. Zhao, Q. Zhang, M. Niino, Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3with layered nanostructure. Appl. Phys. Lett. 90, 012102 (2007)

    ADS  Google Scholar 

  10. M. Abd-El Salam, H. Abdel-Khalek, F.M. Amin, A.R. Wassel, A.M. El-Mahalawy, Evaluation of the influence of thermal annealing on the performance of vertical topological insulator p-n heterojunction broadband photodetector. Opt. Laser Technol. 157, 108756 (2023)

    Google Scholar 

  11. S. Gao, Z. Zhang, B. Li, J. Feng, Bi2Te3/Sb2Te3-graphene bidirectional heterostructures: Enhancement of optical nonlinearity and short pulse generation of solid-state laser. Opt. Laser Technol. 167, 109779 (2023)

    Google Scholar 

  12. C. Sudarshan, S. Jayakumar, K. Vaideki, C. Sudakar, Te-rich Bi2Te3 thin films by electron−beam deposition: Structural, electrical, optical and thermoelectric properties. Thin Solid Films 713, 138355 (2020)

    ADS  Google Scholar 

  13. J.L. Liu, H. Wang, X. Li, H. Chen, Z.K. Zhang, W.W. Pan, G.Q. Luo, C.L. Yuan, Y.L. Ren, W. Lei, High performance visible photodetectors based on thin two-dimensional Bi2Te3 nanoplates. J. Alloys Compd. 798, 656–664 (2019)

    Google Scholar 

  14. Y. Zhang, H. Chen, Z. Li, T. Huang, S. Zheng, Rational design and controlled synthesis of Te/Bi2Te3 heterostructure nanostring composites. J. Cryst. Growth 421, 13–18 (2015)

    ADS  Google Scholar 

  15. K. Ahmad, Z. Almutairi, Enhanced thermoelectric properties of bismuth telluride (Bi2Te3) and multiwall carbon nanotube (MWCNT) composites. Mater. Today Commun. 35, 106228 (2023)

    Google Scholar 

  16. J. Yao, J. Shao, Y. Wang, Z. Zhao, G. Yang, Ultra-broadband and high response of the Bi2Te3–Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 7, 12535–12541 (2015)

    ADS  PubMed  Google Scholar 

  17. T.J. Yoo, W.S. Kim, K.E. Chang, C. Kim, M.G. Kwon, J.Y. Jo, B.H. Lee, High gain and broadband absorption graphene photodetector decorated with Bi2Te3 nanowires. Nanomaterials 11, 755 (2021)

    PubMed  PubMed Central  Google Scholar 

  18. X. Zhang, X. Liu, C. Zhang, S. Peng, H. Zhou, L. He, J. Gou, X. Wang, J. Wang, Epitaxial topological insulator Bi2Te3 for fast visible to mid-infrared heterojunction photodetector by graphene as charge collection medium. ACS Nano 16(3), 4851–4860 (2022)

    PubMed  Google Scholar 

  19. E.M.F. Vieira, J. Figueira, A.L. Pires, J. Grilo, M.F. Silva, A.M. Pereira, L.M. Goncalves, Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J. Alloys Compd. 774, 1102–1116 (2019)

    Google Scholar 

  20. H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric Applications. Renew. Sust. Energ. Rev. 82, 4159–4169 (2018)

    Google Scholar 

  21. L. Miao, J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang, S. Wen, Broadband third order nonlinear optical responses of bismuth telluride nano-sheets. Opt. Mater. Express 6(7), 2244–2251 (2016)

    ADS  Google Scholar 

  22. N. Han, S.I. Kim, J.-D. Yang, K. Lee, H. Sohn, H.-M. So, C.W. Ahn, K.-H. Yoo, Phase-change memory in Bi2Te3 nanowires. Adv. Mater. 23, 1871–1875 (2011)

    PubMed  Google Scholar 

  23. Y. Bao, Z. Ren, H. Li, K. Huang, Flexible nonvolatile resistive switching memory devices based on Bi2Te3 nanosheets films. J. Phys. D Appl. Phys. 52, 075103 (2019)

    ADS  Google Scholar 

  24. J. Cong, A. Khan, P. Hang, L. Cheng, D. Yang, X. Yu, High detectivity graphene/si heterostructure photodetector with a single hydrogenated graphene atomic interlayer for passivation and carrier tunneling. Nanotechnology 33, 505201 (2022)

    ADS  Google Scholar 

  25. A. Khan, J. Cong, R.R. Kumar, S. Ahmed, D. Yang, X. Yu, Chemical vapor deposition of graphene on self-limited SiC interfacial layers formed on silicon substrates for heterojunction devices. ACS Appl. Nano Mater. 5(12), 17544–17555 (2022)

    Google Scholar 

  26. J. Cong, A. Khan, P. Hang, D. Yang, X. Yu, Graphene/Si heterostructure with an organic interfacial layer for a self-powered photodetector with a high ON/OFF ratio. ACS Appl. Electron. Mater. 4(4), 1715–1722 (2022)

    Google Scholar 

  27. M.R. Habib, W. Wang, A. Khan, Y. Khan, S.M. Obaidulla, X. Pi, M. Xu, Theoretical study of interfacial and electronic properties of transition metal dichalcogenides and organic molecules based van der waals heterostructures. Adv. Theory Simul. 3, 2000045 (2020)

    Google Scholar 

  28. A.M. Nawar, A.M. El-Mahalawy, Simple processed semi-transparent Schottky diode based on PMMA-MWCNTs nanocomposite for new generation of optoelectronics. Synt. Met. 255, 116102 (2019)

    Google Scholar 

  29. M. Lanza, A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope. Materials 7, 2155–2182 (2014)

    ADS  PubMed  PubMed Central  Google Scholar 

  30. R. Prakash, S. Sharma, A. Kumar, D. Kaur, Improved resistive switching performance in Cu-cation migrated MoS2 based ReRAM device incorporated with tungsten nitride bottom electrode. Curr. Appl. Phys. 19, 260–265 (2019)

    ADS  Google Scholar 

  31. F. Zahoor, T.Z.A. Zulkifli, F.A. Khanday, Resistive random access memory (rram): an overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett. 15, 90 (2020)

    ADS  PubMed  PubMed Central  Google Scholar 

  32. M. Asif, A. Kumar, Existence of bipolar and unipolar resistive switching in CaZrO3 thin film device. J. Alloys Compd. 859, 158373 (2021)

    Google Scholar 

  33. A.M. Nawar, I.S. Yahia, M.S. Al-Kotb, Stretchable memory loops and photovoltaic characteristics of organic-inorganic solid-state iron (III) chloride tetraphenyl porphyrin/p-Si(111) nanostructure devices. Sens. Actuators A: Phys. 318, 112511 (2021)

    Google Scholar 

  34. H.-P. Cui, J.-C. Li, H.-L. Yuan, Bending effect on the resistive switching behavior of a NiO/TiO2 p–n heterojunction. RSC Adv. 8, 19861–19867 (2018)

    ADS  PubMed  PubMed Central  Google Scholar 

  35. F.M. Amin, A.R. Wassel, A.M. El-Mahalawy, Fabrication of organic-inorganic hybrid device for optoelectronic applications: charge carriers dynamics and photoresponse assessment. Synth. Met. 292, 117210 (2023)

    Google Scholar 

  36. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current—Voltage characteristics. Appl. Phys. Lett. 49(2), 85–87 (1986)

    ADS  Google Scholar 

  37. A.M. Nawar, M. Abd-Elsalam, A.M. El-Mahalawy, M.M. El-Nahass, Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction. Appl. Phys. A 126, 113 (2020)

    ADS  Google Scholar 

  38. T.S. Lee, N.J. Lee, H. Abbas, H.H. Lee, T.-S. Yoon, C.J. Kang, Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes. ACS Appl. Electron. Mater. 2, 1154–1161 (2020)

    Google Scholar 

  39. H. Matsuura, T. Okuno, H. Okushi, K. Tanaka, Electrical properties of n- amorphous/p-crystalline silicon heterojunctions. J. Appl. Phys. 55(4), 1012–1019 (1984)

    ADS  Google Scholar 

  40. L.F. Marsal, J. Pallares, X. Correig, Electrical characterization of n-amorphous/p- crystalline silicon heterojunctions. J. Appl. Phys. 79(11), 8493–8497 (1996)

    ADS  Google Scholar 

  41. Y.J. Song, M.R. Park, E. Guliants, W.A. Anderson, Influence of defects and band offsets on carrier transport mechnisms in amorphous silicon/crystalline silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 64, 225–240 (2000)

    Google Scholar 

  42. J.P. Seif, A. Descoeudres, M. Filipic, F. Smole, M. Topic, Z.C. Holman, S. De Wolf, C. Ballif, Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells. J. Appl. Phys. 115, 024502 (2014)

    ADS  Google Scholar 

  43. S. Munjal, N. Khare, Valence change bipolar resistive switching accompanied with magnetization switching in CoFe2O4 thin film. Sci. Rep. 7, 12427 (2017)

    ADS  PubMed  PubMed Central  Google Scholar 

  44. Y.B. Zhu, K. Zheng, X. Wu, L.K. Ang, Enhanced stability of filament-type resistive switching by interface engineering. Sci. Rep. 7, 43664 (2017)

    ADS  PubMed  PubMed Central  Google Scholar 

  45. A. Ugur, A.G. Imer, Y.S. Ocak, Electrical and photoelectrical characterization of an organic-inorganic heterojunction based on quinolone yellow dye. Mater. Sci. Semicond. Process. 39, 569–574 (2015)

    Google Scholar 

  46. A.M. Nawar, A.M. El-Mahalawy, Heterostructure device based on Brilliant Green nanoparticles–PVA/p-Si interface for analog–digital converting dual-functional sensor applications. J. Mater. Sci. Mater. Electron. 31, 3256–3273 (2020)

    Google Scholar 

  47. B. Boyarbay, H. Çetin, A. Uygun, E. Ayyildiz, Electrical characterization and fabrication of organic/inorganic semiconductor heterojunctions. Appl. Phys. A 103, 89–96 (2011)

    ADS  Google Scholar 

  48. F. Wang, Y. Gao, Z. Pang, L. Yang, J. Yang, Insights into the role of the interface defects density and the bandgap of the back surface field for efficient p-type silicon heterojunction solar cells. RSC Adv. 7, 26776–26782 (2017)

    ADS  Google Scholar 

  49. J.-P. Kleider, J. Alvarez, R. Brüggemann, M.-E. Gueunier-Farret, Recent progress in understanding the properties of the amorphous silicon/crystalline silicon interface. Phys. Status Solidi A 216, 1800877 (2019)

    ADS  Google Scholar 

  50. I.A. Sayed, M. Cavas, R. Gupta, T. Fahmy, A.A. Al-Ghamdi, F. Yakuphanoglu, J. Alloys Compd. 638, 166–171 (2015)

    Google Scholar 

  51. T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold. Appl. Phys. Lett. 102(18), 181904 (2013)

    ADS  Google Scholar 

  52. Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang, L. Yin, Random composites of nickel networks supported by porous alumina toward double negative materials. Adv. Mater. 24(17), 2349–2352 (2012)

    PubMed  Google Scholar 

  53. C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. (2012). https://doi.org/10.1002/adma.201200674

    Article  PubMed  Google Scholar 

  54. Y. Wang, L. Wu, T.I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing. Nanoscale 8(15), 8008–8016 (2016)

    ADS  PubMed  Google Scholar 

  55. R. Gholipur, Z. Khorshidi, A. Bahari, Enhanced absorption performance of carbon nanostructure based metamaterials and tuning impedance matching behavior by an external AC electric field. ACS Appl. Mater. Interfaces 9, 12528–12539 (2017)

    PubMed  Google Scholar 

  56. S.O. Tan, H.U. Tecimer, O. Liçek et al., Frequency dependent C-V and G/ω–V characteristics on the illumination-induced Au/ZnO/n-GaAs Schottky barrier diodes. J. Mater. Sci. Mater. Electron. 28, 4951–4957 (2017)

    Google Scholar 

  57. A. Büyükbaş-Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, M. Koşal, Double-exponential current–voltage (I–V) and negative capacitance (NC) behavior of Al/(CdSe-PVA)/p-Si/Al (MPS) structure. J. Mater. Sci. Mater. Electron. 30, 9572–9581 (2019)

    Google Scholar 

  58. E.E. Tanrıkulu, S. Demirezen, Ş Altındal, İ Uslu, On the anomalous peak and negative capacitance in the capacitance–voltage (C–V) plots of Al/(%7 Zn-PVA)/p-Si (MPS) structure. J. Mater. Sci. Mater. Electron. 29, 2890–2898 (2018)

    Google Scholar 

  59. Ç.Ş Güçlü, A.F. Özdemir, A. Karabulut, A. Kökce, Ş Altındal, Investigation of temperature dependent negative capacitance in the forward bias C-V characteristics of (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs). Mater. Sci. Semicond. Process. 89, 26–31 (2019)

    Google Scholar 

  60. S. Demirezen, E.E. Tanrıkulu, Ş Altındal, The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors. Indian J. Phys. 93, 739–747 (2019)

    ADS  Google Scholar 

  61. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Willey, New York, 1981)

    Google Scholar 

  62. I.S. Yahia, H.Y. Zahran, F.H. Alamri, M.A. Manthrammel, S. AlFaify, A.M. Ali, Microelectronic properties of the organic Schottky diode with pyronin-Y: admittance spectroscopy, and negative capacitance. Phys. B: Condens. Matter 543, 46–53 (2018)

    ADS  Google Scholar 

  63. A. Sharma, P. Kumar, B. Singh, S.R. Chaudhuri, S. Ghosh, Capacitance-voltage characteristics of organic Schottky diode with and without deep traps. Appl. Phys. Lett. 99, 023301 (2011)

    ADS  Google Scholar 

  64. H. Abdel-Khalek, E. Shalaan, M. Abd-El-Salam, A.M. El-Mahalawy, Effect of illumination intensity on the characteristics of Cu(acac)2/n-Si photodiode. Synth. Met. 245, 223–236 (2018)

    Google Scholar 

  65. M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasilewski, A.K. Jonscher, Negative capacitance effect in semiconductor devices. IEEE Trans. Electron. Dev. 45, 2196–2206 (1998)

    ADS  Google Scholar 

  66. S. Zeyrek, E. Acaroğlu, Ş Altındal, S. Birdoğan, M.M. Bülbül, The effect of series resistance and interface states on the frequency dependent C-V and G/w–V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes. Curr. Appl. Phys. 13, 1225–1230 (2013)

    ADS  Google Scholar 

  67. L. Munoz-Diaz, A.J. Rosa, A. Bou, R.S. Sánchez, B. Romero, R.A. John, M.V. Kovalenko, A. Guerrero, J. Bisquert, Inductive and capacitive hysteresis of halide perovskite solar cells and memristors under illumination. Front. Energy Res. 10, 914115 (2022)

    Google Scholar 

  68. A. Bou, J. Bisquert, Impedance spectroscopy dynamics of biological neural elements: from memristors to neurons and synapses. J. Phys. Chem. B 125(35), 9934–9949 (2021)

    PubMed  Google Scholar 

Download references

Funding

The authors are grateful to the researcher's Supporting Project number (RSP2024R468), King Saud University, Riyadh, Saudi Arabia, for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

Ahmed M. Nawar: Idea and Conceptualization-Thin films and devices fabrication-Experimental Characterizations-Data analysis -Reviewing. Omar H. Abd-Elkader: Data analysis - Reviewing. Ahmed M. El-Mahalawy: Data analysis – writing. Lotfi Aleya: Reviewing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ahmed M. Nawar.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest concerning this article's research, authorship, and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawar, A.M., Abd-Elkader, O.H., El-Mahalawy, A.M. et al. On resistive switching and dielectric spectroscopy characteristics of topological insulator-based heterojunction for memory applications. Appl. Phys. A 130, 158 (2024). https://doi.org/10.1007/s00339-024-07292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07292-2

Keywords

Navigation