Log in

Structure, optical, magnetic, morphology and dielectric studies of pristine and green synthesized hematite nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present study describes the green synthesis of hematite (α-Fe2O3) nanomaterials using the Tabernaemontana divaricata flower extract as a reducing/cap**/stabilizing agent and the changes observed in the structural, optical, magnetic and dielectric properties of the product with respect to the pristine counterpart. Powder XRD study showed that use of the extract in green synthesis produces hematite nanomaterials of reduced size, whereas FE-SEM, HRTEM and EDX studies revealed the morphology, particle size distribution, crystallinity as well as the elemental contributions. FT-IR spectroscopy detected the different functional groups and metal-ion bonding present in the synthesized nanomaterials. Raman study observed the seven Raman active (two A1g and five Eg) modes with different intensities. From the UV–Vis study, different electronic transitions occurred in the hematite nanomaterials were identified, and the direct (1.90–1.97 eV) and indirect (1.21–1.46 eV) energy band gap values were estimated. Two photoluminescence peaks (one in visible and the other in near infrared region) detected in the spectra indicated the presence of various defect levels in the hematite nanoparticles within the energy band gap. Magnetic measurements exhibited the Morin transition to occur in these materials, while Mössbauer spectra successfully showed the magnetic contribution of the iron atoms occupying the core and the surface parts of the nanoparticles. Use of the extract in green synthesis produced hematite nanomaterials with extremely high dielectric constant (~ 105) and significantly lower dielectric loss at low frequency and at room temperature when compared to the pristine one which signify their huge application potential. The results obtained from the characterization studies made on the pristine and green synthesized hematite nanomaterials revealed that the green synthesis of hematite nanoparticles using Tabernaemontana divaricata flower extract can efficiently modify their optical, magnetic and dielectric properties. Thus, using commercially cheap starting materials and extracts made from naturally available plant parts, materials having huge application potentials (like microwave and energy storage appliances) can be synthesized at low-cost by the simple green synthesis approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. S. Dua, H. Ahmed, N. Arfin, Soft nanomaterials and their applications, in Nanomaterials: the building blocks of modern technology: synthesis, properties and applications. ed. by T. Khan, M. Jawaid, K.A. Ahmad, B. Singh (Springer Nature Singapore, Singapore, 2023), pp.27–68. https://doi.org/10.1007/978-981-99-4149-0_3

    Chapter  Google Scholar 

  2. M.S. Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1(6), 607 (2019)

    CAS  Google Scholar 

  3. S. Iravani, Bio-based synthesis of magnetic nanoparticles and their applications, in Magnetic nanostructures, nanotechnology in the life sciences. ed. by K. A. A.-E. et al. (Springer Nature Switzerland AG, Switzerland, 2019), pp.13–31. https://doi.org/10.1007/978-3-030-16439-3_2

    Chapter  Google Scholar 

  4. F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mørup, Magnetic properties of hematite nanoparticles. Phys. Rev. B 61(10), 6826 (2000)

    ADS  Google Scholar 

  5. Y.R. Kumar, S. Kavita, A. Palanisamy, M. Vasundhara, Structural optical and magnetic properties of chitosan mediated α-Fe2O3 nanoparticles. Mater. Today 99(2), 1064–1069 (2023)

    Google Scholar 

  6. A.A. Qureshi, S. Javed, H.M.A. Javed, M. Jamshaid, U. Ali, M.A. Akram, Systematic investigation of structural, morphological, thermal, optoelectronic, and magnetic properties of high-purity hematite/magnetite nanoparticles for optoelectronics. Nanomaterials 12(10), 1635 (2022)

    PubMed  PubMed Central  CAS  Google Scholar 

  7. P. Dhar, R. Vinu, Microwave-assisted catalytic solvolysis of lignin to phenols: kinetics and product characterization. ACS Omega 3(11), 15076–15085 (2018)

    PubMed  PubMed Central  CAS  Google Scholar 

  8. P. Kumar, S. Kumar, N. Thakur, Azadirachta indica and polyvinylpyrrolidone encapsulated Fe2O3 nanoparticles to enhance the photocatalytic and antioxidant activity. Inorgan. Chem. Commun. 155, 111084 (2023)

    CAS  Google Scholar 

  9. Y. Li, J. Dang, Y. Ma, H. Ma, Hematite: a good catalyst for the thermal decomposition of energetic materials and the application in nano-thermite. Molecules 28(5), 2035 (2023)

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Y. Ling, G. Wang, J. Reddy, C. Wang, J.Z. Zhang, Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. 124(17), 4150–4155 (2012)

    ADS  Google Scholar 

  11. M.V. Reddy et al., α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Func. Mater. 17(15), 2792–2799 (2007)

    CAS  Google Scholar 

  12. K.G. Gareev, Diversity of iron oxides: mechanisms of formation, physical properties and applications. Magnetochemistry 9(5), 119 (2023)

    CAS  Google Scholar 

  13. S. Kumar, M. Kumar, A. Singh, Synthesis and characterization of iron oxide nanoparticles (Fe2O3, Fe3O4): a brief review. Contemp. Phys. 62(3), 144–164 (2021). https://doi.org/10.1080/00107514.2022.2080910

    Article  ADS  Google Scholar 

  14. M. Muhajir, P. Puspitasari, J.A. Razak, Razak, Synthesis and applications of Hematite α-Fe2O3: A review. J. Mech. Eng. Sci. Technol. (JMEST) 3(2), 51–58 (2020)

    Google Scholar 

  15. B. Wang, Q. Wei, S. Qu, Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int. J. Electrochem. Sci. 8(3), 3786–3793 (2013)

    CAS  Google Scholar 

  16. M.A. Malik, M.Y. Wani, M.A. Hashim, Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab. J. Chem. 5(4), 397–417 (2012)

    CAS  Google Scholar 

  17. L. Zhuang, W. Zhang, Y. Zhao, H. Shen, H. Lin, J. Liang, Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Sci. Rep. 5(1), 1–6 (2015)

    Google Scholar 

  18. S. Kundu, M. Chakraborty, A. Bhattacharjee, Solid-state reaction of ferrocene controlled by co-precursor and reaction atmosphere leading to hematite and cohenite nanomaterials: a reaction kinetic study. J. Phys. Chem. C 127(37), 18397–18408 (2023). https://doi.org/10.1021/acs.jpcc.3c04772

    Article  CAS  Google Scholar 

  19. M.S. Islam, Y. Kusumoto, M. Abdulla-Al-Mamun, Novel rose-type magnetic (Fe3O4, γ-Fe2O3 and α-Fe2O3) nanoplates synthesized by simple hydrothermal decomposition. Mater. Lett. 66(1), 165–167 (2012)

    CAS  Google Scholar 

  20. Q.-X. Gao, X.-F. Wang, J.-L. Di, X.-C. Wu, Y.-R. Tao, Enhanced catalytic activity of α-Fe2O3 nanorods enclosed with 110 and 001 planes for methane combustion and CO oxidation. Catal. Sci. Technol. 1(4), 574–577 (2011)

    CAS  Google Scholar 

  21. X. Wang et al., Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH. J. Mater. Chem. 14(5), 905–907 (2004)

    CAS  Google Scholar 

  22. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13(10), 2638–2650 (2011). https://doi.org/10.1039/c1gc15386b

    Article  CAS  Google Scholar 

  23. D. Jagwani, P. Hari Krishna, Nature’s nano-assets: Green synthesis, characterization techniques and applications—a graphical review. Mater. Today Proc. 46, 2307–2317 (2021). https://doi.org/10.1016/j.matpr.2021.04.185

    Article  CAS  Google Scholar 

  24. M. Huston, M. Debella, M. Dibella, A. Gupta, Green synthesis of nanomaterials. Nanomaterials 11(8), 1–29 (2021). https://doi.org/10.3390/nano11082130

    Article  CAS  Google Scholar 

  25. A. Rana, K. Yadav, S. Jagadevan, A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod. 272, 122880 (2020). https://doi.org/10.1016/j.jclepro.2020.122880

    Article  CAS  Google Scholar 

  26. X. Zhang, Applications of kinetic methods in thermal analysis: a review. Eng. Sci. 14(2), 1–13 (2020)

    ADS  Google Scholar 

  27. Y. Shao et al., Green synthesis of multifunctional fluorescent carbon dots from mulberry leaves (Morus alba L.) residues for simultaneous intracellular imaging and drug delivery. J. Nanopart. Res. 22(8), 1–11 (2020)

    CAS  Google Scholar 

  28. B. Mohapatra, D. Kumar, N. Sharma, S. Mohapatra, Morphological, plasmonic and enhanced antibacterial properties of Ag nanoparticles prepared using Zingiber officinale extract. J. Phys. Chem. Solids 126, 257–266 (2019). https://doi.org/10.1016/j.jpcs.2018.11.020

    Article  ADS  CAS  Google Scholar 

  29. R. Banasiuk et al., Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. Arab. J. Chem. 13(1), 1415–1428 (2020)

    CAS  Google Scholar 

  30. T. Sinha, M. Ahmaruzzaman, A novel green and template free approach for the synthesis of gold nanorice and its utilization as a catalyst for the degradation of hazardous dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 142, 266–270 (2015)

    ADS  CAS  Google Scholar 

  31. T. Wang, X. **, Z. Chen, M. Megharaj, R. Naidu, Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total. Environ. 466, 210–213 (2014)

    ADS  PubMed  Google Scholar 

  32. I. Ali, Water photo splitting for green hydrogen energy by green nanoparticles. Int. J. Hydrogen Energy 44(23), 11564–11573 (2019)

    Google Scholar 

  33. V. Kumar, D.K. Singh, S. Mohan, D. Bano, R.K. Gundampati, S.H. Hasan, Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion. J. Photochem. Photobiol. B. 168, 67–77 (2017)

  34. M. Krishnan et al., Antifouling assessments on biogenic nanoparticles: a field study from polluted offshore platform. Mar. Pollut. Bull. 101(2), 816–825 (2015)

    PubMed  CAS  Google Scholar 

  35. S. Haseena et al., Bio-synthesize of photocatalytic Fe2O3 nanoparticles using Leucas aspera and Jatropha podagrica leaf extract for an effective removal of textile dye pollutants. Optik 249, 168275 (2022)

    ADS  CAS  Google Scholar 

  36. J. Yoonus, R. Resmi, B. Beena, valuation of antibacterial and anticancer activity of green synthesized iron oxide (α-Fe2O3) nanoparticles. Mater. Today 46, 2969–2974 (2021)

    CAS  Google Scholar 

  37. S.K. Noukelag, C.J. Arendse, M. Maaza, Biosynthesis of hematite phase α-Fe2O3 nanoparticles using an aqueous extract of Rosmarinus officinalis leaves. Mater. Today 43, 3679–3683 (2021)

    CAS  Google Scholar 

  38. K. Velsankar, G. Parvathy, S. Mohandoss, M. Krishna Kumar, S. Sudhahar, Celosia argentea leaf extract-mediated green synthesized iron oxide nanoparticles for bio-applications. J. Nanostructure Chem. 12(4), 625–640 (2022)

    CAS  Google Scholar 

  39. M.S.H. Bhuiyan et al., Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 6(8), e04603 (2020)

    PubMed  PubMed Central  Google Scholar 

  40. S.O. Aisida et al., Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci. 10(1), 305–315 (2020). https://doi.org/10.1007/s13204-019-01099-x

    Article  ADS  CAS  Google Scholar 

  41. M. Jamzad, M. Kamari Bidkorpeh, Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J. Nanostructure Chem. 10(3), 193–201 (2020). https://doi.org/10.1007/s40097-020-00341-1

    Article  CAS  Google Scholar 

  42. R. Vinayagam, S. Pai, T. Varadavenkatesan, M.K. Narasimhan, S. Narayanasamy, R. Selvaraj, Structural characterization of green synthesized α-Fe2O3 nanoparticles using the leaf extract of Spondias dulcis. Surfaces Interfaces 20, 100618 (2020). https://doi.org/10.1016/j.surfin.2020.100618

    Article  CAS  Google Scholar 

  43. N. Madubuonu et al., Bio-inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity. Appl. Phys. A 126(1), 72 (2020). https://doi.org/10.1007/s00339-019-3249-6

    Article  ADS  CAS  Google Scholar 

  44. A. Bouafia, S.E. Laouini, Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha Pulegium L.: Effect of ferric chloride concentration on the type of product. Mater. Lett. 265, 127364 (2020). https://doi.org/10.1016/j.matlet.2020.127364

    Article  CAS  Google Scholar 

  45. S. P. Rajendran and K. Sengodan, Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. J. Nanosci. 2017, (2017). https://doi.org/10.1155/2017/8348507

  46. S. Naz, M. Islam, S. Tabassum, N.F. Fernandes, E.J.C. de Blanco, M. Zia, Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J. Mol. Struct. 1185, 1–7 (2019)

    ADS  CAS  Google Scholar 

  47. B.A. Abbasi, J. Iqbal, T. Mahmood, A. Qyyum, S. Kanwal, Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Appl. Organomet. Chem. 33(7), e4947 (2019)

    Google Scholar 

  48. T. Ahmad, R. Phul, N. Khatoon, M. Sardar, Antibacterial efficacy of Ocimum sanctum leaf extract-treated iron oxide nanoparticles. New J. Chem. 41(5), 2055–2061 (2017). https://doi.org/10.1039/C7NJ00103G

    Article  CAS  Google Scholar 

  49. A.T. Khalil, M. Ovais, I. Ullah, M. Ali, Z.K. Shinwari, M. Maaza, Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem. Lett. Rev. 10(4), 186–201 (2017)

    CAS  Google Scholar 

  50. D. Mukherjee, S. Ghosh, S. Majumdar, K. Annapurna, Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J. Environ. Chem. Eng. 4(1), 639–650 (2016)

    CAS  Google Scholar 

  51. M. Alagiri, S.B.A. Hamid, Green synthesis of α-Fe2O3 nanoparticles for photocatalytic application. J. Mater. Sci. 25(8), 3572–3577 (2014)

    CAS  Google Scholar 

  52. N. Ndou, T. Rakgotho, M. Nkuna, I.Z. Doumbia, T. Mulaudzi, R.F. Ajayi, Green synthesis of iron oxide (Hematite) nanoparticles and their influence on sorghum bicolor growth under drought stress. Plants 12(7), 1425 (2023)

    PubMed  PubMed Central  CAS  Google Scholar 

  53. C. Sudhakar, M. Poonkothai, T. Selvankumar, K. Selvam, Facile synthesis of iron oxide nanoparticles using Cassia auriculata flower extract and accessing their photocatalytic degradation and larvicidal effect. J. Mater. Sci. 33(14), 11434–11445 (2022)

    CAS  Google Scholar 

  54. F. Buarki, H. AbuHassan, F. Al Hannan, F. Z. Henari, Green synthesis of iron oxide nanoparticles using Hibiscus rosa sinensis flowers and their antibacterial activity. J. Nanotechnol. 2022, (2022). https://doi.org/10.1155/2022/5474645

  55. M.S. Aida, N. Alonizan, B. Zarrad, M. Hjiri, Green synthesis of iron oxide nanoparticles using Hibiscus plant extract. J. Taibah Univ. Sci. 17(1), 2221827 (2023)

    Google Scholar 

  56. D. Hassan et al., Biosynthesis of pure hematite phase magnetic iron oxide nanoparticles using floral extracts of Callistemon viminalis (bottlebrush): their physical properties and novel biological applications. Artificial Cells Nanomed Biotechnol. 46(sup1), 693–707 (2018)

    CAS  Google Scholar 

  57. E. Rostamizadeh, A. Iranbakhsh, A. Majd, S. Arbabian, I. Mehregan, Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in Barley. J Nanostruct. Chem. 10(2), 125–130 (2020). https://doi.org/10.1007/s40097-020-00335-z

    Article  CAS  Google Scholar 

  58. F. Mohamed, M. Rabia, M. Shaban, Synthesis and characterization of biogenic iron oxides of different nanomorphologies from pomegranate peels for efficient solar hydrogen production. J. Market. Res. 9(3), 4255–4271 (2020)

    CAS  Google Scholar 

  59. H.R. Ali, H.N. Nassar, N.S. El-Gendy, Green synthesis of α-Fe2O3 using Citrus reticulum peels extract and water decontamination from different organic pollutants. Energy Sources Part A 39(13), 1425–1434 (2017). https://doi.org/10.1080/15567036.2017.1336818

    Article  CAS  Google Scholar 

  60. V.A. Niraimathee, V. Subha, R.S.E. Ravindran, S. Renganathan, Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int. J. Environ. Sustain. Dev. 15(3), 227–240 (2016)

    Google Scholar 

  61. T.S. Kam, H.S. Pang, Y.M. Choo, K. Komiyama, Biologically active ibogan and vallesamine derivatives from Tabernaemontana divaricata. Chem. Biodivers. 1(4), 646–656 (2004). https://doi.org/10.1002/cbdv.200490056

    Article  PubMed  CAS  Google Scholar 

  62. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412 (2015)

    Google Scholar 

  63. T. Sarkar, S. Kundu, G. Ghorai, P.K. Sahoo, A. Bhattacharjee, Structural, spectroscopic and morphology studies on green synthesized ZnO nanoparticles. Adv. Nat. Sci. 14(3), 35001 (2023)

    Google Scholar 

  64. J.S. Justus, S.D.D. Roy, A.M.E. Raj, Synthesis and characterization of hematite nanopowders. Mater. Res. Express 3(10), 105037 (2016)

    ADS  Google Scholar 

  65. F. Wang, X.F. Qin, Y.F. Meng, Z.L. Guo, L.X. Yang, Y.F. Ming, Hydrothermal synthesis and characterization of α-Fe2O3 nanoparticles. Mater. Sci. Semicond. Process. 16(3), 802–806 (2013)

    CAS  Google Scholar 

  66. N. Chamkouri, N. Jomehzadeh, N. Naserzadeh, Rapid biosynthesis and antibacterial activity of zinc oxide nanoparticles using fruit peel of Punica granatumL as cellulose. Curr. Res. Green Sustain. Chem 2023, 100366 (6AD)

    Google Scholar 

  67. A. Kulshreshtha, J. Saxena, Alkaloids and Non Alkaloids of Tabernaemontana divaricata. Int. J. Res. Rev. 6(8), 2454–2237 (2019), [Online]. www.ijrrjournal.com

  68. P. Salgado Mendoza, K. Márquez, O. Rubilar, D. Contreras, The effect of phenolic compounds on the green synthesis of iron nanoparticles (FexOy-NPs) with photocatalytic activity. Appl. Nanosci. 9, 371–385 (2018). https://doi.org/10.1007/s13204-018-0931-5

    Article  ADS  CAS  Google Scholar 

  69. J.C. Kuriacose, S.S. Jewur, Studies on the surface interaction of acetic acid on iron oxide. J. Catal. 50(2), 330–341 (1977). https://doi.org/10.1016/0021-9517(77)90042-2

    Article  CAS  Google Scholar 

  70. A. Miri, H. Najafzadeh, M. Darroudi, M.J. Miri, M.A.J. Kouhbanani, M. Sarani, Iron oxide nanoparticles: biosynthesis, magnetic behavior, cytotoxic effect. ChemistryOpen 10(3), 327–333 (2021). https://doi.org/10.1002/open.202000186

    Article  PubMed Central  CAS  Google Scholar 

  71. S.P.S. Porto, R.S. Krishnan, Raman effect of corundum. J. Chem. Phys. 47(3), 1009–1012 (1967)

    ADS  CAS  Google Scholar 

  72. L. Chen et al., Continuous shape-and spectroscopy-tuning of hematite nanocrystals. Inorg. Chem. 49(18), 8411–8420 (2010)

    PubMed  CAS  Google Scholar 

  73. I. Chamritski, G. Burns, Infrared-and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J. Phys. Chem. B 109(11), 4965–4968 (2005)

    PubMed  CAS  Google Scholar 

  74. I. R. Beattie and T. R. Gilson, The single-crystal Raman spectra of nearly opaque materials. Iron(III) oxide and chromium(III) oxide. j. Chem. Soc. A 980–986 (1970). https://doi.org/10.1039/J19700000980

  75. I. Chourpa et al., Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130(10), 1395–1403 (2005)

    ADS  PubMed  CAS  Google Scholar 

  76. S. Kundu et al., Study on co-precursor driven solid state thermal conversion of iron(III)citrate to iron oxide nanomaterials. Appl. Phys. A 129(4), 264 (2023). https://doi.org/10.1007/s00339-023-06559-4

    Article  ADS  CAS  Google Scholar 

  77. A. Rufus, N. Sreeju, V. Vilas, D. Philip, Biosynthesis of hematite (α-Fe2O3) nanostructures: size effects on applications in thermal conductivity, catalysis, and antibacterial activity. J. Mol. Liq. 242, 537–549 (2017)

    CAS  Google Scholar 

  78. B. Ahmmad et al., Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol. 24(1), 160–167 (2013)

    CAS  Google Scholar 

  79. Y.P. He et al., Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 71(12), 125411 (2005)

    ADS  Google Scholar 

  80. D.M. Sherman, T.D. Waite, Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am. Miner. 70(11–12), 1262–1269 (1985)

    ADS  CAS  Google Scholar 

  81. A. Lassoued et al., Synthesis, structural, optical, morphological and magnetic characterization of copper substituted nickel ferrite (CuxNi1− xFe2O4) through co-precipitation method. J. Mater. Sci. Mater. Electron 28(24), 18480–18488 (2017)

    CAS  Google Scholar 

  82. M. Mohammadikish, Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe2O3 nanocrystals. Ceram. Int. 40(1), 1351–1358 (2014)

    CAS  Google Scholar 

  83. M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12(4), 470–475 (2018). https://doi.org/10.1080/16583655.2018.1473946

    Article  Google Scholar 

  84. M. Pudukudy, Z. Yaakob, Facile Synthesis of Quasi Spherical ZnO Nanoparticles with Excellent Photocatalytic Activity. J. Cluster Sci. 26(4), 1187–1201 (2015). https://doi.org/10.1007/s10876-014-0806-1

    Article  CAS  Google Scholar 

  85. Y. Zhang et al., Photoluminescence of Fe2O3nanoparticles prepared by laser oxidation of Fe catalysts in carbon nanotubes. Mater. Res. Bull. 43(12), 3490–3494 (2008)

    CAS  Google Scholar 

  86. A. Rufus, N. Sreeju, D. Philip, Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 6(96), 94206–94217 (2016)

    ADS  CAS  Google Scholar 

  87. L. Lu, L. Li, X. Wang, G. Li, Understanding of the finite size effects on lattice vibrations and electronic transitions of nano α-Fe2O3. J. Phys. Chem. B 109(36), 17151–17156 (2005)

    PubMed  CAS  Google Scholar 

  88. D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5(5), 6682–6702 (2012)

    CAS  Google Scholar 

  89. B.S. Zou, V. Volkov, Surface modification on time-resolved fluorescences of Fe2O3 nanocrystals. J. Phys. Chem. Solids 61(5), 757–764 (2000)

    ADS  CAS  Google Scholar 

  90. M.E. Sadat et al., Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl. Phys. Lett. 105(9), 91903 (2014)

    Google Scholar 

  91. R.A. Bepari, P. Bharali, B.K. Das, J. Saudi Chem. Soc. 21, S170–S178 (2017)

    CAS  Google Scholar 

  92. M. Tadic et al., Synthesis, morphology and microstructure of pomegranate-like hematite (α-Fe2O3) superstructure with high coercivity. J. Alloy. Compd. 543, 118–124 (2012)

    CAS  Google Scholar 

  93. M. Ounacer et al., Structural and magnetic studies of annealed iron oxide nanoparticles. J. Supercond. Novel Magn. 33(10), 3249–3261 (2020). https://doi.org/10.1007/s10948-020-05586-z

    Article  CAS  Google Scholar 

  94. N. Amin, S. Arajs, Morin temperature of annealed submicronic α-Fe2O3 particles. Phys. Rev. B 35(10), 4810 (1987)

    ADS  CAS  Google Scholar 

  95. A. Bhattacharjee, A. Rooj, M. Roy, J. Kusz, P. Gütlich, Solventless synthesis of hematite nanoparticles using ferrocene. J. Mater. Sci. 48(7), 2961–2968 (2013). https://doi.org/10.1007/s10853-012-7067-x

    Article  ADS  CAS  Google Scholar 

  96. J. Jacob, A. Khadar, VSM and Mossbauer study of nanostructured hematite. J. Magn. Magn. Mater. 322(6), 614–621 (2010). https://doi.org/10.1016/j.jmmm.2009.10.025

    Article  ADS  CAS  Google Scholar 

  97. S. Ghosh et al., Effect of size fractionation on purity, thermal stability and electrical properties of natural hematite. J. Electron. Mater. 50, 3836–3845 (2021)

    ADS  CAS  Google Scholar 

  98. R. Bhat, M. Qayoom, G.N. Dar, B. Want, Structural, dielectric, optical and magnetic studies of dysprosium doped iron oxide nanostructures. Mater. Chem. Phys. 245, 122764 (2020). https://doi.org/10.1016/j.matchemphys.2020.122764

    Article  CAS  Google Scholar 

  99. M.M. Gomaa, Electrical properties of hematite and pure sand synthetic homogeneous mixture. Appl. Water Sci. 13(2), 43 (2023)

    ADS  CAS  Google Scholar 

  100. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. 345(5), 817–855 (1913)

    Google Scholar 

  101. J.C. Maxwell, Electricity and Magnetism, vol. 2 (Oxford University Press, New York, 1973)

    Google Scholar 

  102. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    ADS  CAS  Google Scholar 

  103. S. Roy et al., Crystallinity mediated variation in optical and electrical properties of hydrothermally synthesized boehmite (γ-AlOOH) nanoparticles. J. Alloy. Compd. 763, 749–758 (2018)

    CAS  Google Scholar 

  104. R. Bhat, M. Qayoom, G.N. Dar, B. Want, Improved dielectric, conductivity and magnetic properties of erbium doped α-Fe2O3 nanoparticles. J. Mater. Sci. Mater. Electron 30(24), 20914–20934 (2019)

    CAS  Google Scholar 

  105. J.C. Papaioannou, G.S. Patermarakis, H.S. Karayianni, Electron hop** mechanism in hematite (α-Fe2O3). J. Phys. Chem. Solids 66(5), 839–844 (2005). https://doi.org/10.1016/j.jpcs.2004.11.002

    Article  ADS  CAS  Google Scholar 

  106. M. Mumtaz, M. Rajpoot, M. Ali, S. Hussain, M. Khan, Influence of Graphene Oxide on AC-conduction of Hematite Nanoparticles. Mater. Innovations 02, 26–35 (2022). https://doi.org/10.54738/MI.2022.2103

    Article  CAS  Google Scholar 

  107. S. Anand, V.M. Vinosel, M.A. Jenifer, S. Pauline, Dielectric Properties, Ac Electrical Conductivity and Electric Modulus Profiles of Hematite (α-Fe2O3) Nanoparticles. Int. Res. J. Eng. Technol. 4, 358 (2017)

    Google Scholar 

  108. H. Mansour et al., Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation. Appl. Phys. A 123(12), 787 (2017). https://doi.org/10.1007/s00339-017-1408-1

    Article  ADS  CAS  Google Scholar 

  109. R. Karmakar, A.K. Das, S. Pramanik, P.K. Kuiri, A.K. Meikap, Tunable dielectric properties and magneto-dielectric coupling of hematite based trap free flexible semiconductor. J. Alloy. Compd. 881, 160516 (2021)

    CAS  Google Scholar 

  110. M. Qayoom, K.A. Shah, A.H. Pandit, A. Firdous, G.N. Dar, Dielectric and electrical studies on iron oxide (α-Fe2O3) nanoparticles synthesized by modified solution combustion reaction for microwave applications. J. Electroceram. 45(1), 7–14 (2020)

    CAS  Google Scholar 

  111. N.B. Gatchakayala, R.S.R. Dachuru, Synthesis, magnetic, AC conductivity and dielectric properties of hematite nanocrystallites. Phys. Chem. Solid State 24(2), 244–248 (2023)

    CAS  Google Scholar 

  112. V. Sangeetha, K. Gayathri, P. Krishnan, N. Sivakumar, N. Kanagathara, G. Anbalagan, Growth, optical, thermal, dielectric and microhardness characterizations of melaminium bis (trifluoroacetate) trihydrate single crystal. J. Cryst. Growth 389, 30–38 (2014)

    ADS  CAS  Google Scholar 

  113. R.L. de S. e Silva, P. Banerjee, A.F. Júnior, Functional properties of donor-and acceptor-co-doped high dielectric constant zinc oxide ceramics. Phys. Chem. Chem. Phys. 21(18), 9456–9464 (2019)

    Google Scholar 

  114. A. Ghosh, Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys. Rev. B 41(3), 1479 (1990)

    ADS  CAS  Google Scholar 

  115. M. Iacob et al., Iron oxide nanoparticles as dielectric and piezoelectric enhancers for silicone elastomers. Smart Mater. Struct. 26(10), 105046 (2017)

    ADS  Google Scholar 

  116. Q. Chi et al., Enhanced thermal conductivity and dielectric properties of iron oxide/polyethylene nanocomposites induced by a magnetic field. Sci. Rep. 7(1), 1–11 (2017)

    Google Scholar 

Download references

Acknowledgements

Author SK is thankful to DST-INSPIRE, Government of India for providing a fellowship. This work was partially carried out using the facilities of UGC-DAE CSR, Indore. The authors acknowledge the financial support from UGC-DAE CSR through a Collaborative Research Scheme (CRS) project number CRS/2022-23/01/731. Financial support for the thermogravimetry analyzer (STA 449 F3 Jupiter) to the Department of Science and Technology, Government of India, through a grant to the Department of Physics, Visva-Bharati is gratefully acknowledged. Authors thank DST-PURSE Facility, Visva-Bharati University for providing the FESEM and EDX facilities.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, major data collection and analysis were performed by TS, while SK, GG, PKS and VRR were involved in some data collections. AB conceptualized the problem and designed the study. The first draft of the manuscript was written by TS and finalized by AB. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Ashis Bhattacharjee.

Ethics declarations

Conflict of interests

Authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, T., Kundu, S., Ghorai, G. et al. Structure, optical, magnetic, morphology and dielectric studies of pristine and green synthesized hematite nanoparticles. Appl. Phys. A 130, 123 (2024). https://doi.org/10.1007/s00339-023-07228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07228-2

Keywords

Navigation