Log in

Magnetically tuned Ni0.3Co0.7DyxFe2–xO4 ferrites for high-density data storage applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dysprosium (Dy3+)-substituted Ni–Co nanoparticles were synthesized by sol–gel technique. Structural and morphological analyses were accomplished by X-ray diffraction (XRD), scanning electron microscopy (SEM) and field emission transmission electron microscopy (FE-TEM). The crystallite size and lattice parameter followed a decreasing trend up on increase in Dy3+ substitution for the concentration x ≤ 0.15, which is due to the hindrance in crystallite growth and deposition of Dy3+ on grain boundaries, respectively. The lattice strain was increased from 5.027 to 8.814 × \({10}^{-3}\) with enhancement in Dy3+ content. The morphological studies showed uniform distribution of particles with slight agglomeration and the average particle size was calculated to be 22.17 nm, which is in good agreement with XRD results. The magnetic studies were executed by vibrating sample magnetometer (VSM) over a wide range of applied magnetic field. The soft ferrimagnetic nature of these ferrites was revealed by narrow (M–H) curve. The magnetic parameters exhibited decreasing behavior upon increasing amount of substitution. The coercivity (Hc) was recorded to be 1097 Oe for x = 0.00 and saturation magnetization (Ms) was calculated in the range 27.04–40.86 emu/g. The anisotropy constant and magneton number were found to be in the range of 9887–46,703 erg/cm3 and 1.21–1.71 µB, respectively. These properties of prepared ferrites point towards their applicability in magnetic recording instruments, memory, and high-density data storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available with us corresponding author, [ZA Gilani] and can be presented upon reasonable request.

References

  1. M.H. Ehsani, S. Esmaeili, M. Aghazadeh, P. Kameli, F.S. Tehrani, I. Karimzadeh, An investigation on the impact of Al do** on the structural and magnetic properties of Fe3O4 nanoparticles. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-2572-2

    Article  Google Scholar 

  2. T. Dippong, I.G. Deac, O. Cadar, E.A. Levei, Effect of silica embedding on the structure, morphology and magnetic behavior of (Zn0.6Mn0.4Fe2O4)δ/(SiO2)(100−δ) nanoparticles. Nanomaterials 11, 2232 (2021). https://doi.org/10.3390/nano11092232

    Article  Google Scholar 

  3. T. Dippong, E.-A. Levei, D. Toloman, L. Barbu-Tudoran, O. Cadar, Investigation on the formation, structural and photocatalytic properties of mixed Mn-Zn ferrites nanoparticles embedded in SiO2 matrix. J. Anal. Appl. Pyrolysis 158, 105281 (2021). https://doi.org/10.1016/j.jaap.2021.105281

    Article  Google Scholar 

  4. A. Radoń, A. Włodarczyk, Ł Sieroń, M. Rost-Roszkowska, Ł Chajec, D. Łukowiec et al., Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Sci. Rep. 13, 7860 (2023). https://doi.org/10.1038/s41598-023-34738-z

    Article  ADS  Google Scholar 

  5. A. Radoń, M. Kądziołka-Gaweł, D. Łukowiec, P. Gębara, K. Cesarz-Andraczke, A. Kolano-Burian et al., Influence of magnetite nanoparticles shape and spontaneous surface oxidation on the electron transport mechanism. Materials 14, 5241 (2021). https://doi.org/10.3390/ma14185241

    Article  ADS  Google Scholar 

  6. A. Radoń, J. Kubacki, M. Kądziołka-Gaweł, P. Gębara, Ł Hawełek, S. Topolska et al., Structure and magnetic properties of ultrafine superparamagnetic Sn-doped magnetite nanoparticles synthesized by glycol assisted co-precipitation method. J. Phys. Chem. Solids 145, 109530 (2020). https://doi.org/10.1016/j.jpcs.2020.109530

    Article  Google Scholar 

  7. A. Radoń, S. Łoński, M. Kądziołka-Gaweł, P. Gębara, M. Lis, D. Łukowiec et al., Influence of magnetite nanoparticles surface dissolution, stabilization and functionalization by malonic acid on the catalytic activity, magnetic and electrical properties. Colloids Surf. A 607, 125446 (2020). https://doi.org/10.1016/j.colsurfa.2020.125446

    Article  Google Scholar 

  8. M. Yehia, S. Ismail, A. Hashhash, Structural and magnetic studies of rare-earth substituted nickel ferrites. J. Supercond. Novel Magn. 27, 771–774 (2014). https://doi.org/10.1007/s10948-013-2340-z

    Article  Google Scholar 

  9. Y. Fang, S. Zhang, P.R. Ohodnicki, G. Wang, Relation between cation distribution and chemical bonds in spinel NiFe2O4. Mater. Today Commun. 33, 104436 (2022). https://doi.org/10.1016/j.mtcomm.2022.104436

    Article  Google Scholar 

  10. S. Chakrabarty, S. Bandyopadhyay, M. Pal, A. Dutta, Sol-gel derived cobalt containing Ni–Zn ferrite nanoparticles: dielectric relaxation and enhanced magnetic property study. Mater. Chem. Phys. 259, 124193 (2021). https://doi.org/10.1016/j.matchemphys.2020.124193

    Article  Google Scholar 

  11. A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar et al., Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014). https://doi.org/10.1016/j.jmmm.2013.11.052

    Article  ADS  Google Scholar 

  12. C. Murugesan, K. Ugendar, L. Okrasa, J. Shen, G. Chandrasekaran, Zinc substitution effect on the structural, spectroscopic and electrical properties of nanocrystalline MnFe2O4 spinel ferrite. Ceram. Int. 47, 1672–1685 (2021). https://doi.org/10.1016/j.ceramint.2020.08.284

    Article  Google Scholar 

  13. Z. Zhang, Study on the influence of magnesium do** on the magnetic properties of spinel Zn-Mg ferrite. Mater. Today Commun. 26, 101734 (2021). https://doi.org/10.1016/j.mtcomm.2020.101734

    Article  Google Scholar 

  14. A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 358–359, 87–92 (2014). https://doi.org/10.1016/j.jmmm.2014.01.039

    Article  ADS  Google Scholar 

  15. R. Kambale, K. Song, Y. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 053910 (2011). https://doi.org/10.1063/1.3632987

    Article  ADS  Google Scholar 

  16. S. Bhandare, R. Kumar, A. Anupama, M. Mishra, R.V. Kumar, V. Jali et al., Effect of Mg-substitution in Co–Ni-Ferrites: cation distribution and magnetic properties. Mater. Chem. Phys. 251, 123081 (2020). https://doi.org/10.1016/j.matchemphys.2020.123081

    Article  Google Scholar 

  17. A.K. Vishwakarma, B. Sen Yadav, J. Singh, S. Sharma, N. Kumar, Antibacterial activity of PANI coated CoFe2O4 nanocomposite for gram-positive and gram-negative bacterial strains. Mater. Today Commun. 31, 103229 (2022). https://doi.org/10.1016/j.mtcomm.2022.103229

    Article  Google Scholar 

  18. M. Stefanescu, M. Stoia, T. Dippong, O. Stefanescu, P. Barvinschi, Preparation of CoXFe3-XO4 oxydic system starting from metal nitrates and propanediol. Acta Chim. Slov. 56, 379–385 (2009)

    Google Scholar 

  19. M. Stefanescu, M. Stoia, C. Caizer, T. Dippong, P. Barvinschi, Preparation of Co x Fe 3–x O 4 nanoparticles by thermal decomposition of some organo-metallic precursors. J. Therm. Anal. Calorim. 97, 245–250 (2009). https://doi.org/10.1007/s10973-009-0250-x

    Article  Google Scholar 

  20. N. Gupta, A. Verma, S.C. Kashyap, D.C. Dube, Microstructural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films for microwave applications. J. Magn. Magn. Mater. 308, 137–142 (2007). https://doi.org/10.1016/j.jmmm.2006.05.015

    Article  ADS  Google Scholar 

  21. S. Patange, S.E. Shirsath, K. Lohar, S. Jadhav, N. Kulkarni, K. Jadhav, Electrical and switching properties of NiAlxFe2− xO4 ferrites synthesized by chemical method. Physica B 406, 663–668 (2011). https://doi.org/10.1016/j.physb.2010.11.081

    Article  ADS  Google Scholar 

  22. M. Kokare, N.A. Jadhav, Y. Kumar, K. Jadhav, S. Rathod, Effect of Nd3+ do** on structural and magnetic properties of Ni0. 5Co0. 5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. J. Alloy. Compd. 748, 1053–1061 (2018). https://doi.org/10.1016/j.jallcom.2018.03.168

    Article  Google Scholar 

  23. C. Luadthong, V. Itthibenchapong, N. Viriya-empikul, K. Faungnawakij, P. Pavasant, W. Tanthapanichakoon, Synthesis, structural characterization, and magnetic property of nanostructured ferrite spinel oxides (AFe2O4, A= Co, Ni and Zn). Mater. Chem. Phys. 143, 203–208 (2013). https://doi.org/10.1016/j.matchemphys.2013.08.052

    Article  Google Scholar 

  24. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová et al., Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016). https://doi.org/10.1016/j.jmmm.2015.09.055

    Article  ADS  Google Scholar 

  25. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014). https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  ADS  Google Scholar 

  26. M. Kokare, N.A. Jadhav, V. Singh, S. Rathod, Effect of Sm3+ substitution on the structural and magnetic properties of Ni-Co nanoferrites. Opt. Laser Technol. 112, 107–116 (2019). https://doi.org/10.1016/j.optlastec.2018.10.045

    Article  ADS  Google Scholar 

  27. Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S.K. Asl, G. Yousefi, L. Karimi, Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014). https://doi.org/10.1016/j.jmmm.2014.01.016

    Article  ADS  Google Scholar 

  28. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013). https://doi.org/10.1016/j.jmmm.2013.05.030

    Article  ADS  Google Scholar 

  29. F.L. Deepak, M. Bañobre-López, E. Carbó-Argibay, M.F. Cerqueira, Y. Piñeiro-Redondo, J. Rivas et al., A systematic study of the structural and magnetic properties of Mn-, Co-, and Ni-doped colloidal magnetite nanoparticles. J. Phys. Chem. C 119, 11947–11957 (2015). https://doi.org/10.1021/acs.jpcc.5b01575

    Article  Google Scholar 

  30. V.L. Deringer, C. Goerens, M. Esters, R. Dronskowski, B.P. Fokwa, Chemical modeling of mixed occupations and site preferences in anisotropic crystal structures: case of complex intermetallic borides. Inorg. Chem. 51, 5677–5685 (2012). https://doi.org/10.1021/ic300023t

    Article  Google Scholar 

  31. T. Dippong, E.A. Levei, C. Leostean, O. Cadar, Impact of annealing temperature and ferrite content embedded in SiO2 matrix on the structure, morphology and magnetic characteristics of (Co0.4Mn0.6Fe2O4)δ (SiO2)100-δ nanocomposites. J. Alloys Compounds 868, 159203 (2021). https://doi.org/10.1016/j.jallcom.2021.159203

    Article  Google Scholar 

  32. T. Dippong, E.A. Levei, O. Cadar, Investigation of structural, morphological and magnetic properties of MFe2O4 (M = Co, Ni, Zn, Cu, Mn) obtained by thermal decomposition. Int. J. Mol. Sci. 23, 8483 (2022). https://doi.org/10.3390/ijms23158483

    Article  Google Scholar 

  33. M.A. Almessiere, Y. Slimani, I.A. Auwal, S.E. Shirsath, A. Manikandan, A. Baykal et al., Impact of Tm3+ and Tb3+ rare earth cations substitution on the structure and magnetic parameters of Co-Ni nanospinel ferrite. Nanomaterials 10, 2384 (2020). https://doi.org/10.3390/nano10122384

    Article  Google Scholar 

  34. M.F. Warsi, A. Iftikhar, M.A. Yousuf, M.I. Sarwar, S. Yousaf, S. Haider et al., Erbium substituted nickel–cobalt spinel ferrite nanoparticles: tailoring the structural, magnetic and electrical parameters. Ceram. Int. 46, 24194–24203 (2020). https://doi.org/10.1016/j.ceramint.2020.06.199

    Article  Google Scholar 

  35. D. Phugate, R.B. Borade, S. Kadam, L. Dhale, R. Kadam, S.E. Shirsath et al., Effect of Ho3+ ion do** on thermal, structural, and morphological properties of Co–Ni ferrite synthesized by sol-gel method. J. Supercond. Novel Magn. 33, 3545–3554 (2020). https://doi.org/10.1007/s10948-020-05616-w

    Article  Google Scholar 

  36. A.B. Kadam, V.K. Mande, S.B. Kadam, R.H. Kadam, S.E. Shirsath, R.B. Borade, Influence of gadolinium (Gd3+) ion substitution on structural, magnetic and electrical properties of cobalt ferrites. J. Alloys Compd. 840, 155669 (2020). https://doi.org/10.1016/j.jallcom.2020.155669

    Article  Google Scholar 

  37. A.D. Patil, S.M. Patange, P.M. Dighe, S.F. Shaikh, Au.H.S. Rana, B. Pandit et al., Tuning the structural, optical and magnetic properties of NiCuZn (Ni0.4Cu0.3Zn0.3Fe2O4) spinel ferrites by Nb2O5 additive. Ceram. Int. 48, 27039–27050 (2022). https://doi.org/10.1016/j.ceramint.2022.06.016

    Article  Google Scholar 

  38. V. Bhanu, P.V. Prakash Madduri, M. Harsita, S. Soumya, T. Durga Rao, P.K. Raju et al., Enhanced magnetic anisotropy in Dy-doped nanocrystalline NiFe2O4. Mater. Today Commun. 35, 105859 (2023). https://doi.org/10.1016/j.mtcomm.2023.105859

    Article  Google Scholar 

  39. A. Maqsood, K. Khan, M. Anis-ur-Rehman, M. Malik, Spectroscopic and magnetic investigation of NiCo nanoferrites. J. Alloy. Compd. 509, 7493–7497 (2011). https://doi.org/10.1016/j.jallcom.2011.04.092

    Article  Google Scholar 

  40. T. Dippong, E.A. Levei, I.G. Deac, I. Petean, G. Borodi, O. Cadar, Sol-gel synthesis, structure, morphology and magnetic properties of Ni0.6Mn0.4Fe2O4 nanoparticles embedded in SiO2 matrix. Nanomaterials 11, 3455 (2021). https://doi.org/10.3390/nano11123455

    Article  Google Scholar 

  41. T. Dippong, D. Toloman, M. Dan, E.A. Levei, O. Cadar, Structural, morphological and photocatalytic properties of Ni-Mn ferrites: Influence of the Ni: Mn ratio. J. Alloys Compd. 913, 165129 (2022). https://doi.org/10.1016/j.jallcom.2022.165129

    Article  Google Scholar 

  42. A. Zubair, Z. Ahmad, A. Mahmood, W.-C. Cheong, I. Ali, M.A. Khan et al., Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites. Results Phys. 7, 3203–3208 (2017). https://doi.org/10.1016/j.rinp.2017.08.035

    Article  ADS  Google Scholar 

  43. A. Kadam, S. Shinde, S. Yadav, P. Patil, K. Rajpure, Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J. Magn. Magn. Mater. 329, 59–64 (2013). https://doi.org/10.1016/j.jmmm.2012.10.008

    Article  ADS  Google Scholar 

  44. R. Zakir, S.S. Iqbal, A.U. Rehman, S. Nosheen, T.S. Ahmad, N. Ehsan et al., Spectral, electrical, and dielectric characterization of Ce-doped Co-Mg-Cd spinel nano-ferrites synthesized by the sol-gel auto combustion method. Ceram. Int. 47, 28575–28583 (2021). https://doi.org/10.1016/j.ceramint.2021.07.016

    Article  Google Scholar 

  45. K. Tanbir, M.P. Ghosh, R.K. Singh, M. Kar, S. Mukherjee, Effect of do** different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 31, 435–443 (2020). https://doi.org/10.1007/s10854-019-02546-9

    Article  Google Scholar 

  46. R. Kumar, P.B. Barman, R.R. Singh, An innovative direct non-aqueous method for the development of Co doped Ni-Zn ferrite nanoparticles. Mater. Today Commun. 27, 102238 (2021). https://doi.org/10.1016/j.mtcomm.2021.102238

    Article  Google Scholar 

  47. P. Gębara, M. Cesnek, J. Bednarcik, Anomalous behavior of thermal expansion of α-Fe impurities in the La (Fe Co, Si) 13-based alloys modified by Mn or selected lanthanides (Ce, Pr, Ho). Curr. Appl. Phys. 19, 188–192 (2019). https://doi.org/10.1016/j.cap.2018.12.001

    Article  ADS  Google Scholar 

  48. M. Almessiere, B. Unal, Y. Slimani, H. Gungunes, M. Toprak, N. Tashkandi et al., Effects of Ce–Dy rare earths co-do** on various features of Ni–Co spinel ferrite microspheres prepared via hydrothermal approach. J. Market. Res. 14, 2534–2553 (2021). https://doi.org/10.1016/j.jmrt.2021.07.142

    Article  Google Scholar 

  49. T. Dippong, E.A. Levei, O. Cadar, I.G. Deac, M. Lazar, G. Borodi et al., Effect of amorphous SiO2 matrix on structural and magnetic properties of Cu0. 6Co0. 4Fe2O4/SiO2 nanocomposites. J. Alloy. Compd. 849, 156695 (2020). https://doi.org/10.1016/j.jallcom.2020.156695

    Article  Google Scholar 

  50. K.M. Srinivasamurthy, K. Manjunatha, E.I. Sitalo, S.P. Kubrin, I.C. Sathish, S. Matteppanavar et al., Effect of Ce3+ substitution on the structural, morphological, dielectric, and impedance spectroscopic studies of Co–Ni ferrites for automotive applications. Indian J. Phys. 94, 593–604 (2020). https://doi.org/10.1007/s12648-019-01495-7

    Article  ADS  Google Scholar 

  51. M. Salgaonkar, R. Gad, Influence of B-site Gd+ 3 substitution on various properties of Co-ferrite nanoparticles. Appl. Phys. A 127, 1–16 (2021). https://doi.org/10.1007/s00339-021-05026-2

    Article  Google Scholar 

  52. M. Rahman, N. Hasan, M. Hoque, M. Hossen, M. Arifuzzaman, Structural, dielectric, and electrical transport properties of Al3+ substituted nanocrystalline Ni-Cu spinel ferrites prepared through the sol–gel route. Results Phys. 38, 105610 (2022). https://doi.org/10.1016/j.rinp.2022.105610

    Article  Google Scholar 

  53. M. Almessiere, Y. Slimani, A.D. Korkmaz, M. Sertkol, A. Baykal, I. Ercan et al., Sonochemical synthesis of CoFe2-xNdxO4 nanoparticles: structural, optical, and magnetic investigation. J. Supercond. Novel Magn. 32, 3837–3844 (2019). https://doi.org/10.1007/s10948-019-05147-z

    Article  Google Scholar 

  54. K. Lohar, A. Pachpinde, M. Langade, R. Kadam, S.E. Shirsath, Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+ doped CoFe2O4 nanoparticles. J. Alloy. Compd. 604, 204–210 (2014). https://doi.org/10.1016/j.jallcom.2014.03.141

    Article  Google Scholar 

  55. D. Pawar, P.P. Khirade, V. Vinayak, L. Ravangave, S. Rathod, Sol–gel auto-ignition fabrication of Gd3+ incorporated Ni0. 5Co0. 5Fe2O4 multifunctional spinel ferrite nanocrystals and its impact on structural, optical and magnetic properties. SN Appl. Sci. 2, 1–12 (2020). https://doi.org/10.1007/s42452-020-03505-4

    Article  Google Scholar 

  56. T. Dippong, D. Toloman, E.-A. Levei, O. Cadar, A. Mesaros, A possible formation mechanism and photocatalytic properties of CoFe2O4/PVA-SiO2 nanocomposites. Thermochim. Acta 666, 103–115 (2018). https://doi.org/10.1016/j.tca.2018.05.021

    Article  Google Scholar 

  57. T. Dippong, E.-A. Levei, I.G. Deac, F. Goga, O. Cadar, Investigation of structural and magnetic properties of NixZn1-xFe2O4/SiO2 (0≤ x≤ 1) spinel-based nanocomposites. J. Anal. Appl. Pyrol. 144, 104713 (2019). https://doi.org/10.1016/j.jaap.2019.104713

    Article  Google Scholar 

  58. T. Dippong, E.A. Levei, F. Goga, O. Cadar, Influence of Mn2+ substitution with Co2+ on structural, morphological and coloristic properties of MnFe2O4/SiO2 nanocomposites. Mater Charact 172, 110835 (2021). https://doi.org/10.1016/j.matchar.2020.110835

    Article  Google Scholar 

  59. L.B. Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.J. Vaulay et al., Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE=La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. J. Magn. Magn. Mater. 320, 3242–3250 (2008). https://doi.org/10.1016/j.jmmm.2008.06.031

    Article  ADS  Google Scholar 

  60. P. Monisha, P. Priyadharshini, S. Gomathi, K. Pushpanathan, Influence of Mn dopant on the crystallite size, optical and magnetic behaviour of CoFe2O4 magnetic nanoparticles. J. Phys. Chem. Solids 148, 109654 (2021). https://doi.org/10.1016/j.jpcs.2020.109654

    Article  Google Scholar 

  61. N. Sivakumar, A. Narayanasamy, J.-M. Greneche, R. Murugaraj, Y. Lee, Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J. Alloy. Compd. 504, 395–402 (2010). https://doi.org/10.1016/j.jallcom.2010.05.125

    Article  Google Scholar 

  62. M.A. Almessiere, Y. Slimani, A. Baykal, Synthesis and characterization of Co1–2xNixMnxCeyFe2–yO4 nanoparticles. J. Rare Earths 38, 188–194 (2020). https://doi.org/10.1016/j.jre.2019.07.005

    Article  Google Scholar 

  63. A. Ditta, M.A. Khan, M. Junaid, R.A. Khalil, M.F. Warsi, Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0. 4Co0. 6Fe2O4) ferrites. Physica B 507, 27–34 (2017). https://doi.org/10.1016/j.physb.2016.11.030

    Article  ADS  Google Scholar 

  64. S. Hassanzadeh-Tabrizi, S. Behbahanian, J. Amighian, Synthesis and magnetic properties of NiFe2− xSmxO4 nanopowder. J. Magn. Magn. Mater. 410, 242–247 (2016). https://doi.org/10.1016/j.jmmm.2016.03.015

    Article  ADS  Google Scholar 

  65. M.F. Sarac, Magnetic, structural, and optical properties of gadolinium-substituted Co0.5Ni0.5Fe2O4 spinel ferrite nanostructures. J. Supercond. Nov. Magn. 33, 397–406 (2020). https://doi.org/10.1007/s10948-019-05359-3

    Article  Google Scholar 

  66. T. Dippong, E.A. Levei, I.G. Deac, I. Petean, O. Cadar, Dependence of structural, morphological and magnetic properties of manganese ferrite on Ni-Mn substitution. Int. J. Mol. Sci. 23, 3097 (2022). https://doi.org/10.3390/ijms23063097

    Article  Google Scholar 

  67. A. Pachpinde, M. Langade, K. Lohar, S. Patange, S.E. Shirsath, Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2− xO4 nanoparticles. Chem. Phys. 429, 20–26 (2014). https://doi.org/10.1016/j.chemphys.2013.11.018

    Article  Google Scholar 

  68. M.A. Maksoud, A. El-Ghandour, A. Ashour, M. Atta, S. Abdelhaleem, A.H. El-Hanbaly et al., La3+ doped LiCo0. 25Zn0. 25Fe2O4 spinel ferrite nanocrystals: Insights on structural, optical and magnetic properties. J. Rare Earths 39, 75–82 (2021). https://doi.org/10.1016/j.jre.2019.12.017

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Researchers Supporting Project Number (RSPD2024R699) King Saud University, Riyadh, Saudi Arabia for support.

Author information

Authors and Affiliations

Authors

Contributions

The role(s) of all the authors are listed as follows on the behalf of all the authors. FAS: conducting a research and investigation process, specifically performing the experiments, or data/evidence collection; preparation, creation and/or presentation of the published work, specifically writing the initial draft. HMNHKA: development or design of methodology; creation of models. MK: provision of study materials, instrumentation, and computing resources analysis tools. ZAG: ideas; formulation or evolution of overarching research goals and aims; verification, experiments and other research outputs; oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team. SMA: management and coordination responsibility for the research activity planning and execution. N-u-HK: maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse. MAS: preparation, creation, specifically critical review, commentary, or revision—including pre- or post-publication stages. MYK: application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data.

Corresponding authors

Correspondence to Zaheer Abbas Gilani or Syed Mansoor Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, F.A., Asghar, H.M.N.u.H.K., Khalid, M. et al. Magnetically tuned Ni0.3Co0.7DyxFe2–xO4 ferrites for high-density data storage applications. Appl. Phys. A 130, 65 (2024). https://doi.org/10.1007/s00339-023-07224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07224-6

Keywords

Navigation