Log in

Energy transfer characteristics of Nd3+/Yb3+-codoped phospho-silicate oxyfluoride glasses for ~ 1.0 µm laser applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nd3+/Yb3+-codoped phospho-silicate oxyfluoride (PNSBYNd0.5Yb0.5) glasses were prepared by melt-quenching technique and the structural and photoluminescence (PL) properties were investigated. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to assess glass microstructure and dispersed elements in the glass, respectively. A high-intense and broad Raman band appeared at 1179 cm−1 is attributed to υas (Si–O–Si) stretching vibrations of Q3 units owing to high-alkali (Na+) silicates and O–P–O (PO)2− symmetric stretching vibrations in Q2 units. The g value of unpaired electrons in PNSBYNd0.5Yb0.5 glasses was assessed by electron spin resonance (ESR) spectra and found to be 2.0168, more significant than the standard value (2.0023). Various bismuth ionic states (Bi2+, Bi3+ and Bi5+) were related in the Bi 4f7/2 and Bi 4f5/2 XPS spectra; however, Bi3+ ions were dominated. From the PL spectrum, 874 nm band for the 4F3/2 → 4I9/2 transition of Nd3+ ions was dominated over 1053 nm emission band perceived in PNSBYNd0.5Yb0.5 glasses due to its quasi-three-level system. Energy transfer (ET) and cross-relaxations (CR) were unveiled in Nd/Yb-doped PNSBYNd0.5Yb0.5 glasses upon 808 nm diode laser excitation. The Nd3+ emission bands 874 and 1053 nm were merged with the Yb3+ band at 975 nm due to CR and ET from 4F3/2 → 2F7/2. The high intensity of the 975 nm laser may be a suitable candidate for NIR laser and amplification applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data is available at the corresponding author and will be provided only on request basis.

References

  1. V. Thomas, R.G.S. Sofin, M. Allen, H. Thomas, P.R. Biju, G. Jose, N.V. Unnikrishnan, Optical analysis of samarium doped sodium bismuth silicate glass. Spectrochim. Acta Mol. Biomol. Spectrosc. 171, 144–148 (2017)

    ADS  Google Scholar 

  2. I. Iparraguirre, J. Azkargorta, R. Balda, K. Venkata Krishnaiah, C.K. Jayasankar, M. Al-Saleh, J. Fernández, Spontaneous and stimulated emission spectroscopy of a Nd3+-doped phosphate glass under wavelength selective pum**. Opt. Express 19, 19441 (2011)

    Google Scholar 

  3. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, N. Chanthima, Y. Tariwong, Physical, vibrational, optical and luminescence investigations of Dy3+-doped yttrium calcium silicoborate glasses for cool white LED applications. J. Alloy. Compd. 726, 1062–1071 (2017)

    Google Scholar 

  4. B. Peng, L. Jiang, X.M. Qiu, Z.C. Fan, W. Huang, Ytterbium doped heavy metal oxide glasses with high emission cross-section. J. Alloy. Compd. 398, 170–172 (2005)

    Google Scholar 

  5. K. Venkata Krishnaiah, P. Venkatalakshmamma, Ch. Basavapoornima, I.R. Martín, K. Soler-Carracedo, M.A. Hernández-Rodríguez, V. Venkatramu, C.K. Jayasankar, Er3+-doped tellurite glasses for enhancing a solar cell photocurrent through photon upconversion upon 1500 nm excitation. Mater. Chem. Phys. 199, 67–72 (2017)

    Google Scholar 

  6. S. Yoo, M.P. Kalita, A.J. Boyland, A.S. Webb, R.J. Standish, J.K. Sahu, M.C. Paul, S. Das, S.K. Bhadra, M. Pal, Ytterbium-doped Y2O3 nanoparticle silica optical fibers for high power fiber lasers with suppressed photodarkening. Opt. Commun.Commun. 283(18), 3423–3427 (2010)

    ADS  Google Scholar 

  7. B. Klimesz, R. Lisiecki, W. Ryba-Romanowski, Thermal, spectroscopic and optical sensor properties of oxyfluorotellurite glasses doped with holmium and ytterbium. Mater. Res. Bull. 153, 111909 (2022)

    Google Scholar 

  8. E.S. de Lima Filho, K.V. Krishnaiah, Y. Ledemi, Y.-J. Yu, Y. Messaddeq, G. Nemova, R. Kashyap, Ytterbium-doped glass-ceramics for optical refrigeration. Opt. Express 23, 4630 (2015)

    ADS  Google Scholar 

  9. K.V. Krishnaiah, E.S. de LimaFilho, Y. Ledemi, G. Nemova, Y. Messaddeq, R. Kashyap, Development of ytterbium-doped oxyfluoride glasses for laser cooling applications. Sci. Rep. 6, 21905 (2016)

    ADS  Google Scholar 

  10. P. Kowalik, I. Kamińska, K. Fronc, A. Borodziuk, M. Duda, T. Wojciechowski, K. Sobczak, D. Kalinowska, M.T. Klepka, B. Sikora, The ROS-generating photosensitizer-free NaYF4:Yb, Tm@SiO2 upconverting nanoparticles for photodynamic therapy application. Nanotechnology 32, 475101 (2021)

    ADS  Google Scholar 

  11. Y.C. Dong, A. Kumar, D.N. Rosario-Berríos, S. Si-Mohamed, J.C. Hsu, L.M. Nieves, P. Douek, P.B. Noël, D.P. Cormode, Ytterbium nanoparticle contrast agents for conventional and spectral photon-counting CT and their applications for hydrogel imaging. ACS Appl. Mater. Interfaces 14, 34 (2022)

    Google Scholar 

  12. I.D. Zakiryanova, D.O. Zakiryanov, Ab initio molecular dynamics simulations and Raman spectra of the YbCl3–KCl and Yb2O3–YbCl3–KCl ionic melts. J. Mol. Liq. 318, 114054 (2020)

    Google Scholar 

  13. K. Venkata Krishnaiah, C.K. Jayasankar, S. Chaurasia, C.G. Murali, L.J. Dhareshwar, Preparation and characterization of Yb3+-doped metaphosphate glasses for high energy and high power laser applications. Sci. Adv. Mater. 5, 276–284 (2013)

    Google Scholar 

  14. A. Prnováa, K. Bodišová, R. Klement, M. Migát, P. Veteškab, M. Škrátek, E. Bruneel, I. VanDriessche, D. Galusek, Preparation and characterization ofYb2O3–Al2O3 glasses by the Pechini sol–gel method combined with flame synthesis. Ceram. Int. 40, 6179–6184 (2014)

    Google Scholar 

  15. L. Wang, H. Zeng, B. Yang, F. Ye, J. Chen, G. Chen, A.T. Smith, L. Sun, Structure-dependent spectroscopic properties of Yb3+–doped phosphosilicate glasses modified by SiO2. Materials 10, 241 (2017)

    ADS  Google Scholar 

  16. J. Wang, B. Zheng, P. Wang, 3D printed Er3+/Yb3+ co-doped phosphosilicate glass based on sol-gel technology. J. Non-Cryst. SolidsCryst. Solids 550, 120362 (2020)

    Google Scholar 

  17. G. Neelima, K. Venkata Krishnaiah, N. Ravi, K. Suresh, K. Tyagarajan, T. Jayachandra Prasad, Investigation of optical and spectroscopic properties of neodymium doped oxyfluoro-titania-phosphate glasses for laser applications. Scr. Mater. 162, 246–250 (2019)

    Google Scholar 

  18. Z.A.S. Mahraz, E.S. Sazali, M.R. Sahar, N.U. Amran, S.N.S. Yaacob, S.M. Aziz, S.Q. Mawlud, F.M. Noor, A.N. Harun, Spectroscopic investigations of near-infrared emission from Nd3+-doped zinc-phosphate glasses: Judd–Ofelt evaluation. J. Non-Cryst. SolidsCryst. Solids 509, 106–114 (2019)

    ADS  Google Scholar 

  19. D.B.S. Soh, S. Yoo, J. Nilsson, J.K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, V. Philippov, Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range. IEEE J. Quantum Electron. 40(9), 1275–1282 (2004)

    ADS  Google Scholar 

  20. L. Baia, R. Stefan, W. Kiefer, S. Simon, Structural characteristics of B2O3–Bi2O3 glasses with high transition metal oxide content. J. Raman Spectrosc.Spectrosc. 36, 262–266 (2005)

    ADS  Google Scholar 

  21. D. Manzani, C.B. de Araujo, G. Boudebs, Y. Messaddeq, S.J.L. Ribeiro, The role of Bi2O3 on the thermal, structural, and optical properties of tungsten-phosphate glasses. J. Phys. Chem. B 117, 408–414 (2013)

    Google Scholar 

  22. A. Mandlule, F. Döhler, L. van Wüllen, T. Kasuga, D.S. Brauer, Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J. Non-Cryst. SolidsCryst. Solids 392–393, 31–38 (2014)

    ADS  Google Scholar 

  23. H. El Hamzaoui, C. Kinowski, I. Razdobreev, A. Cassez, G. Bouwmans, B. Prochet, B. Capoen, M. Bouazaoui, Synthesis, structural and optical properties of bismuth-doped sol–gel-derived phosphosilicate glasses. Phys. Status Solidi A 216, 1800411 (2018)

    ADS  Google Scholar 

  24. S. Chakraborty, A.K. Arora, Temperature evolution of Raman spectrum of iron phosphate glass. Vib. Spectrosc.Spectrosc. 61, 99–104 (2012)

    Google Scholar 

  25. T. Seuthe, M. Grehn, A. Mermillod-Blondin, H.J. Eichler, J. Bonse, M. Eberstein, Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy. Opt. Mater. Express 73(6), 755–764 (2013)

    ADS  Google Scholar 

  26. C.M. Calahoo, J.W. Zwanziger, I.S. Butler, Mechanical-structural investigation of ion-exchanged lithium silicate glass using micro-raman spectroscopy. J. Phys. Chem. C 120(13), 7213–7232 (2016)

    Google Scholar 

  27. D.W. Matson, S.K. Sharma, J.A. Philpotts, The structure of high-silica alkalisilicate glasses. A Raman spectroscopic investigation. J. Non-Cryst. SolidsCryst. Solids 58(2–3), 323–352 (1983)

    ADS  Google Scholar 

  28. Y. Yue, Y. Wang, Y. Cao, S. Chen, Q. Zhou, W. Chen, L. Hu, Effect of Al2O3 on structure and properties of Al2O3–K2O–P2O5 glasses. Opt. Mater. Express 8(2), 245–258 (2018)

    ADS  Google Scholar 

  29. J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance. Elementary Theory and Practical Applications, 2nd edn. (Wiley, Hoboken, 2007), p.158

    Google Scholar 

  30. G. Leniec, L. Macalik, S.M. Kaczmarek, T. Skibinski, J. Hanuza, EPR and optical properties of KY(WO4)2:Gd3+ powders. J. Mater. Res. 27(23), 2973–2981 (2012)

    ADS  Google Scholar 

  31. C.N. Banwell, E.M. Mc Cash, Fundamentals of Molecular Spectroscopy, 4th edn. (Tata McGraw-Hill Publishing, New Delhi, 1996)

    Google Scholar 

  32. G.D. Khattak, M.A. Salim, A.S. Al-Harthi, D.J. Thompson, L.E. Wenger, Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS). J. Non-Cryst. SolidsCryst. Solids 212, 180–191 (1997)

    ADS  Google Scholar 

  33. http://www.xpsfitting.com/2013/01/phosphorus.html

  34. Z. Yongminga, L. Yanhonga, Z. Yanga, H. Guangyanb, Y. Yingning, Effect of Yb3+ concentration on the structures and upconversion luminescence properties of Y2O3:Er3+ ultrafine phosphors. Rare Met. 27(6), 603 (2008)

    Google Scholar 

  35. C. Li, J. Qiu, Z. Song, Qi. Wang, X. Wang, Y. Li, Z. Yang, Z. Yin, D. Zhou, Effects of Yb2O3 on the NIR emission performance of Bi–Yb codoped aluminophosphosilicate glasses. J. Non-Cryst. SolidsCryst. Solids 383, 169–172 (2014)

    ADS  Google Scholar 

  36. A. Arafat, S.A. Samad, M.D. Wadge, M.T. Islam, A.L. Lewis, E.R. Barney, I. Ahmed, Thermal and crystallization kinetics of yttrium-doped phosphatebased Glasses. Int J. Appl. Glass Sci. 11(1), 120–133 (2020)

    Google Scholar 

  37. Z. Zou, Wu. Ting, Lu. Hao, Tu. Yuyuan, S. Zhao, S. **e, F. Han, Xu. Shiqing, Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2 nanocrystals. RSC Adv. 8, 7679–7686 (2018)

    ADS  Google Scholar 

  38. Y. Cheng, C. Yu, H. Dong, S. Wang, C. Shao, Y. Sun, S. Sun, Y. Shen, J. Cheng, L. Hu, Spectral properties of ultra-low thermal expansion Er3+/Yb3+ co-doped phosphate glasses. Ceram. Int. 49(11(B)), 18305–18310 (2023)

    Google Scholar 

  39. J.A. Jiménez, Physical and spectroscopic properties of variable Yb2O3 doped phosphate glasses containing SnO as UV sensitizer for Yb3+ NIR emission. Opt. Mater. 141, 113984 (2023)

    Google Scholar 

  40. C.N. Santos, D. De Sousa, P.E. Meneses, D.R. Neuville, A.C. Hernandes, A. Ibanez, Structural, dielectric, and optical properties of yttrium calcium borate glasses. Appl. Phys. Lett. 94, 151901 (2009)

    ADS  Google Scholar 

  41. I.A. Bufetov, V.V. Dudin, A.V. Shubin, A.K. Senatorov, E.M. Dianov, A.B. Grudinin, S.E. Goncharov, I.D. Zalevskii, A.N. Gur’yanov, M.V. Yashkov, A.A. Umnikov, N.N. Vechkanov, Efécient 0.9-lm neodymium-doped single-mode ébre laser. Quantum Electron. 33(12), 1035–1037 (2003)

    ADS  Google Scholar 

  42. S. Han, X. Li, H. Xu, Y. Zhao, H. Yu, H. Zhang, Y. Wu, Z. Wang, X. Hao, X. Xu, Graphene Q-switched 0.9-µm Nd:La0.11Y0.89VO4 laser. Chin. Opt. Lett. 12(1), 011401 (2014)

    ADS  Google Scholar 

  43. N. Pavel, K. Lünstedt, K. Petermann, G. Huber, Multipass pumped Nd-based thin-disk lasers: continuous-wave laser operation at 1.06 and 0.9 µm with intracavity frequency doubling. Appl. Opt. 46(34), 8256–8263 (2007)

    ADS  Google Scholar 

  44. M.M. Ismail, Y.M. Hamdy, H.A. Abo-Mosallam, Enhancing of 4F3/24I9/2 transition of Nd3+ doped BaO–Ga2O3–Al2O3–B2O3 glasses for near-infrared laser applications. J. Lumin. 263, 120014 (2023)

    Google Scholar 

  45. Y. Yue, M. Fu, Y. Yang, W. Chen, L. Hu, M. Guzik, G. Boulon, Effect of silica-alumina co-introduction on structure as well as physical and spectroscopic properties of Nd3+-doped potassium phosphate glass. J. Non-Cryst. SolidsCryst. Solids 610, 122306 (2023)

    Google Scholar 

  46. J.O. White, Parameters for quantitative comparison of two-, three-, and four-level laser media, operating wavelengths, and temperatures. IEEE J. Quantum Electron. 45(10), 1213–1220 (2009)

    ADS  Google Scholar 

  47. Y. Tan, F. Chen, J.R. Vázquez, H. de Aldana, Yu and Huai**Zhang, Quasi-three-level laser emissions of neodymium doped disordered crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 21(1), 1601905 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Nirlakalla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vootukuru, J.R., Hemakumar, U., Renigunta, P.S. et al. Energy transfer characteristics of Nd3+/Yb3+-codoped phospho-silicate oxyfluoride glasses for ~ 1.0 µm laser applications. Appl. Phys. A 129, 744 (2023). https://doi.org/10.1007/s00339-023-07015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07015-z

Keywords

Navigation